Phase transitions in graphs on orientable surfaces

Let $\mathbb{S}_g$ be the orientable surface of genus $g$. We prove that the component structure of a graph chosen uniformly at random from the class $\mathcal{S}_g(n,m)$ of all graphs on vertex set $[n]=\{1,\dotsc,n\}$ with $m$ edges embeddable on $\mathbb{S}_g$ features two phase transitions. The first phase transition mirrors the classical phase transition in the Erdős--Renyi random graph $G(n,m)$ chosen uniformly at random from all graphs with vertex set $[n]$ and $m$ edges. It takes place at $m=\frac{n}{2}+O(n^{2/3})$, when a unique largest component, the so-called \emph{giant component}, emerges. The second phase transition occurs at $m = n+O(n^{3/5})$, when the giant component covers almost all vertices of the graph. This kind of phenomenon is strikingly different from $G(n,m)$ and has only been observed for graphs on surfaces. Moreover, we derive an asymptotic estimation of the number of graphs in $\mathcal{S}_g(n,m)$ throughout the regimes of these two phase transitions.

[1]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[2]  Konstantinos Panagiotou,et al.  On the Degree Sequences of Random Outerplanar and Series-Parallel Graphs , 2008, APPROX-RANDOM.

[3]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[4]  Béla Bollobás,et al.  A Simple Branching Process Approach to the Phase Transition in Gn, p , 2012, Electron. J. Comb..

[5]  Amin Coja-Oghlan,et al.  Core forging and local limit theorems for the k-core of random graphs , 2017, J. Comb. Theory B.

[6]  Bruce A. Reed,et al.  On the Maximum Degree of a Random Planar Graph , 2008, Comb. Probab. Comput..

[7]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[8]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[9]  N. Wormald,et al.  Enumeration of Rooted Cubic Planar Maps , 2002 .

[10]  BehrischMichael,et al.  The order of the giant component of random hypergraphs , 2010 .

[11]  Guillaume Chapuy,et al.  Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.

[12]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[13]  Mihyun Kang,et al.  Cubic Graphs and Related Triangulations on Orientable Surfaces , 2016, Electron. J. Comb..

[14]  Konstantinos Panagiotou,et al.  Maximal biconnected subgraphs of random planar graphs , 2009, TALG.

[15]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[16]  Béla Bollobás,et al.  Asymptotic normality of the size of the giant component via a random walk , 2012, J. Comb. Theory, Ser. B.

[17]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[18]  Amin Coja-Oghlan,et al.  Local Limit Theorems for the Giant Component of Random Hypergraphs† , 2014, Combinatorics, Probability and Computing.

[19]  Colin McDiarmid,et al.  Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[20]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[21]  Manuel Bodirsky,et al.  Generating labeled planar graphs uniformly at random , 2003, Theor. Comput. Sci..

[22]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[23]  C. McDiarmid,et al.  RANDOM PLANAR GRAPHS WITH GIVEN AVERAGE DEGREE , 2007 .

[24]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[25]  Marc Noy,et al.  Asymptotic enumeration and limit laws for graphs of fixed genus , 2010, J. Comb. Theory, Ser. A.

[26]  Wenjie Fang,et al.  Generating Functions of Bipartite Maps on Orientable Surfaces , 2015, Electron. J. Comb..

[27]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[28]  M. Noy,et al.  On the probability of planarity of a random graph near the critical point , 2012, 1204.3376.

[29]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[30]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[31]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[32]  Béla Bollobás,et al.  Exploring hypergraphs with martingales , 2017, Random Struct. Algorithms.

[33]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[34]  Konstantinos Panagiotou,et al.  On the degree distribution of random planar graphs , 2011, SODA '11.

[35]  Oliver Riordan,et al.  The k-Core and Branching Processes , 2005, Combinatorics, Probability and Computing.

[36]  Colin McDiarmid,et al.  On the Number of Edges in Random Planar Graphs , 2004, Combinatorics, Probability and Computing.

[37]  Anusch Taraz,et al.  The random planar graph process , 2008, Random Struct. Algorithms.

[38]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[39]  Amin Coja-Oghlan,et al.  The order of the giant component of random hypergraphs , 2007, Random Struct. Algorithms.

[40]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[41]  G. Parisi,et al.  Planar diagrams , 1978 .

[42]  Tomasz Luczak,et al.  Size and connectivity of the k-core of a random graph , 1991, Discret. Math..

[43]  P. Erdos,et al.  On the existence of a factor of degree one of a connected random graph , 1966 .

[44]  Tomasz Luczak,et al.  Two critical periods in the evolution of random planar graphs , 2010, 1006.0444.

[45]  Amin Coja-Oghlan,et al.  How does the core sit inside the mantle? , 2015, Random Struct. Algorithms.

[46]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[47]  Colin McDiarmid,et al.  Random planar graphs with n nodes and a fixed number of edges , 2005, SODA '05.

[48]  C. McDiarmid,et al.  Random Graphs from Planar and Other Addable Classes , 2006 .

[49]  Svante Janson,et al.  Asymptotic normality of the k-core in random graphs , 2008 .

[50]  Colin McDiarmid,et al.  Random cubic planar graphs , 2007, Random Struct. Algorithms.

[51]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[52]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[53]  Mihyun Kang,et al.  Enumeration of cubic multigraphs on orientable surfaces , 2015, Electron. Notes Discret. Math..

[54]  Tomasz Łuczak,et al.  Size and connectivity of the k-core of a random graph , 1991 .

[55]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[56]  Guillaume Chapuy,et al.  Simple recurrence formulas to count maps on orientable surfaces , 2015, J. Comb. Theory, Ser. A.

[57]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.

[58]  Éric Fusy,et al.  Uniform random sampling of planar graphs in linear time , 2007, Random Struct. Algorithms.

[59]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[60]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[61]  Gilles Schaeffer,et al.  Random sampling of large planar maps and convex polyhedra , 1999, STOC '99.

[62]  Konstantinos Panagiotou,et al.  3-Connected Cores In Random Planar Graphs , 2011, Comb. Probab. Comput..

[63]  Manuel Bodirsky,et al.  Generating unlabeled connected cubic planar graphs uniformly at random , 2008, Random Struct. Algorithms.

[64]  M. Loebl,et al.  The enumeration of planar graphs via Wick's theorem , 2006, math/0605218.

[65]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.