A dependence maximization view of clustering
暂无分享,去创建一个
Le Song | Alexander J. Smola | Arthur Gretton | Karsten M. Borgwardt | Alex Smola | Le Song | A. Gretton | K. Borgwardt
[1] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[2] Dana H. Ballard,et al. Computer Vision , 1982 .
[3] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[4] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[5] Alexander J. Smola,et al. Learning with kernels , 1998 .
[6] Maja Pantic,et al. Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Santosh S. Vempala,et al. On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[8] Chris H. Q. Ding,et al. Spectral Relaxation for K-means Clustering , 2001, NIPS.
[9] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[10] William Bialek,et al. Entropy and Inference, Revisited , 2001, NIPS.
[11] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[12] Mark A. Girolami,et al. Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.
[13] Alexander J. Smola,et al. Kernels and Regularization on Graphs , 2003, COLT.
[14] Marina Meila,et al. Data centering in feature space , 2003, AISTATS.
[15] Chris H. Q. Ding,et al. K-means clustering via principal component analysis , 2004, ICML.
[16] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[17] Inderjit S. Dhillon,et al. Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.
[18] Amnon Shashua,et al. A unifying approach to hard and probabilistic clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[19] Bernhard Schölkopf,et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.
[20] Marina Meila,et al. The uniqueness of a good optimum for K-means , 2006, ICML.
[21] Kilian Q. Weinberger,et al. An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding , 2006, AAAI.
[22] U. Rothblum,et al. Integer Convex Maximization , 2006 .
[23] Stephen P. Boyd,et al. A duality view of spectral methods for dimensionality reduction , 2006, ICML.
[24] Noam Slonim,et al. The Information Bottleneck : Theory and Applications , 2006 .