Safe Multirobot Navigation Within Dynamics Constraints

This paper introduces a refinement of the classical sense-plan-act objective maximization method for setting agent goals, a real-time randomized path planner, a bounded acceleration motion control system, and a randomized velocity-space search for collision avoidance of multiple moving robotic agents. We have found this approach to work well for dynamic and unpredictable domains requiring real-time response and flexible coordination of multiple agents. First, the approach employs randomized search for objective maximization and motion planning, allowing real-time or any-time performance. Next, a novel cooperative safety algorithm is employed which respects agent dynamics limitations while also preventing collisions with static obstacles or other participating agents. An implementation of our multilayer approach has been tested and validated on real robots, forming the basis for an autonomous robotic soccer team

[1]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[2]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[4]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[5]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[6]  Robert B. Tilove,et al.  Local obstacle avoidance for mobile robots based on the method of artificial potentials , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[8]  Jean-Claude Latombe,et al.  Robot motion planning , 1991, The Kluwer international series in engineering and computer science.

[9]  Anthony Stentz Optimal and Efficient Path Planning for Unknown and Dynamic Environments , 1993 .

[10]  P. Fiorini,et al.  Motion planning in dynamic environments using the relative velocity paradigm , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[11]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[13]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[14]  Hiroaki Kitano,et al.  RoboCup: The Robot World Cup Initiative , 1997, AGENTS '97.

[15]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[16]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[17]  Hiroaki Kitano,et al.  RoboCup: robot world cup , 1998, IEEE Robotics Autom. Mag..

[18]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[19]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[20]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[21]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[22]  Manuela M. Veloso,et al.  Motion Control in Dynamic Multi-Robot Environments , 1999, RoboCup.

[23]  Gordon Wyeth,et al.  MAPS: a system for multi-agent coordination , 2000, Adv. Robotics.

[24]  Hiroaki Kitano,et al.  RoboCup-98: Robot Soccer World Cup II , 2001, Lecture Notes in Computer Science.

[25]  Minoru Asada,et al.  Dynamic task assignment in a multiagent/multitask environment based on module conflict resolution , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[26]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[27]  Christian Laugier,et al.  Towards real-time global motion planning in a dynamic environment using the NLVO concept , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Pekka Isto,et al.  Constructing probabilistic roadmaps with powerful local planning and path optimization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Bernhard Nebel,et al.  http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72569 CS Freiburg: Coordinating Robots for Successful Soccer Playing , 2022 .

[30]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[31]  Manuela M. Veloso,et al.  Real-Time Randomized Path Planning for Robot Navigation , 2002, RoboCup.

[32]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[33]  David Ball,et al.  Multi-robot Control in Highly Dynamic, Competitive Environments , 2003, RoboCup.

[34]  Brett Browning,et al.  Multi-robot team response to a multi-robot opponent team , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[35]  Brett Browning,et al.  STP: Skills, tactics, and plays for multi-robot control in adversarial environments , 2005 .

[36]  Brian P. Gerkey,et al.  A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems , 2004, Int. J. Robotics Res..

[37]  Thomas Röfer,et al.  A Behavior Architecture for Autonomous Mobile Robots Based on Potential Fields , 2004, RoboCup.

[38]  Emanuele Menegatti,et al.  How a Cooperative Behavior can emerge from a Robot Team , 2004, DARS.

[39]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[40]  Martin A. Riedmiller,et al.  RoboCup 2004: Robot Soccer World Cup VIII , 2005, RoboCup.