Microfracturing during primary migration in shales

[1]  A. N. Snarskiy Relationship between Primary Migration and Compaction of Rocks , 1961 .

[2]  J. B. Walsh The effect of cracks on the compressibility of rock , 1965 .

[3]  J. B. Walsh The effect of cracks in rocks on Poisson's ratio , 1965 .

[4]  J. B. Walsh The effect of cracks on the uniaxial elastic compression of rocks , 1965 .

[5]  B. Tissot,et al.  Nouvelles Données sur les Mécanismes de Genèse et de Migration du Pétrole Simulation Mathématique et Application à la Prospection , 1971 .

[6]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[7]  R. Kranz Microcracks in rocks: a review , 1983 .

[8]  W. A. England,et al.  The movement and entrapment of petroleum fluids in the subsurface , 1987, Journal of the Geological Society.

[9]  I. Ozkaya A simple analysis of oil-induced fracturing in sedimentary rocks , 1988 .

[10]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[12]  R. Capuano Mineralogical evidence of fluid flow in microfractures in geopressured shales , 1993 .

[13]  S. Peacock Large-scale hydration of the lithosphere above subducting slabs , 1993 .

[14]  J. Espitalie,et al.  Experimental simulation of primary migration , 1994 .

[15]  F. Montel,et al.  Primary migration behaviour of hydrocarbons: from laboratory experiments to geological situations through fluid flow models , 1994 .

[16]  L. Vernik Hydrocarbon‐generation‐induced microcracking of source rocks , 1994 .

[17]  P. Ulmer,et al.  Serpentine Stability to Mantle Depths and Subduction-Related Magmatism , 1995, Science.

[18]  J. Hunt,et al.  Petroleum Geochemistry and Geology , 1995 .

[19]  P. Horsrud,et al.  Mechanical and petrophysical properties of North Sea shales , 1998 .

[20]  F. Marquis,et al.  Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies , 1998 .

[21]  B. Bekins,et al.  Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget , 1998 .

[22]  J. Harrington,et al.  Gas transport properties of clays and mudrocks , 1999, Geological Society, London, Special Publications.

[23]  Q. Fisher,et al.  Anisotropic permeability and bimodal pore-size distributions of fine-grained marine sediments , 2000 .

[24]  B. Jamtveit,et al.  Accelerated hydration of the Earth's deep crust induced by stress perturbations , 2000, Nature.

[25]  Paul D. Bons,et al.  New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks , 2001 .

[26]  T. Engelder,et al.  An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex , 2005 .

[27]  Fault gouge evolution in highly overconsolidated claystones , 2006 .

[28]  Andrew C. Aplin,et al.  Permeability and petrophysical properties of 30 natural mudstones , 2007 .

[29]  J. Kozicki,et al.  A new open-source software developed for numerical simulations using discrete modeling methods , 2008 .

[30]  Y. Guéguen,et al.  Anisotropy of elastic wave velocities in deformed shales: Part 1 — Experimental results , 2008 .

[31]  Robert G. Jeffrey,et al.  Escape of fluid-driven fractures from frictional bedding interfaces : A numerical study , 2008 .

[32]  J. Mathiesen,et al.  Controls on rock weathering rates by reaction-induced hierarchical fracturing , 2008 .

[33]  Laboratory Characterization of Anisotropy and Fluid Effects on Shale Mechanical Properties Using Inclined Direct Shear Testing Device IDSTD , 2008 .

[34]  J. Rouzaud,et al.  High‐velocity frictional properties of a clay‐bearing fault gouge and implications for earthquake mechanics , 2008 .

[35]  François Renard,et al.  Intense fracturing and fracture sealing induced by mineral growth in porous rocks: the force of crystallization , 2009 .

[36]  Frédéric-Victor Donzé,et al.  YADE‐OPEN DEM: an open‐source software using a discrete element method to simulate granular material , 2009 .

[37]  Z.-H. Jin,et al.  Subcritical propagation and coalescence of oil‐filled cracks: Getting the oil out of low‐permeability source rocks , 2010 .

[38]  Roger Wepf,et al.  3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport , 2011 .

[39]  D. Dewhurst,et al.  Geomechanical and ultrasonic characterization of a Norwegian Sea shale , 2011 .

[40]  Anders Malthe-Sørenssen,et al.  4D imaging of fracturing in organic-rich shales during heating , 2011, 1101.2295.

[41]  Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: ‘Excavation Damaged Zone’ around a cylindrical drift in Callovo-Oxfordian Argilite (Bure) , 2011 .

[42]  4D imaging of fracturing in organic-rich shales during heating , 2011, 1101.2295.

[43]  J. Breyer Shale Reservoirs: Giant Resources for the 21st Century , 2012 .

[44]  Emanuele Catalano,et al.  Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings , 2012, Transport in Porous Media.

[45]  F. Donze,et al.  Modelling progressive failure in fractured rock masses using a 3D discrete element method , 2012 .

[46]  Øyvind Hammer,et al.  Sculpting of Rocks by Reactive Fluids , 2012 .

[47]  E. Skurtveit,et al.  Experimental investigation of CO2 breakthrough and flow mechanisms in shale , 2012 .

[48]  Zhiqiang Fan,et al.  Modelling petroleum migration through microcrack propagation in transversely isotropic source rocks , 2012 .

[49]  H. Sone Mechanical properties of shale gas reservoir rocks, and itsrelation to the in-situ stress variation observed in shale gasreservoirs , 2012 .

[50]  Yves Guéguen,et al.  Dehydration-induced damage and deformation in gypsum and implications for subduction zone processes , 2012 .

[51]  Experimental Determination of the Fracture Toughness and Ductility of the Mancos Shale, Utah , 2013 .

[52]  Emanuele Catalano,et al.  Pore‐scale modeling of fluid‐particles interaction and emerging poromechanical effects , 2013, 1304.4895.

[54]  M. Zoback,et al.  Mechanical properties of shale-gas reservoir rocks — Part 1: Static and dynamic elastic properties and anisotropy , 2013 .

[55]  F. Donze,et al.  A DEM model for soft and hard rocks: Role of grain interlocking on strength , 2013 .

[56]  Self-Sealing Capacity of Macro-Cracked Argillite under Confinement , 2013 .

[57]  Paul Meakin,et al.  A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale , 2013 .

[58]  On the Mechanisms of Shale Microfracture Propagation , 2014 .

[59]  J. Olson,et al.  Natural fractures in shale: A review and new observations , 2014 .

[60]  P. Cobbold,et al.  Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock , 2014 .

[61]  J. Dahl,et al.  Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales , 2014 .

[62]  Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  J. Faleide,et al.  Petrophysical implications of source rock microfracturing , 2015 .

[64]  Martin J. Blunt,et al.  Dynamic imaging of oil shale pyrolysis using synchrotron X‐ray microtomography , 2016 .

[65]  F. Donze,et al.  Micromechanics of wing crack propagation for different flaw properties , 2016 .

[66]  Bruno Chareyre,et al.  3D Hydro-Mechanical Modeling of Multiple Injections , 2016 .

[67]  François Renard,et al.  Microfracturing and microporosity in shales , 2016 .

[68]  J. Lorenz,et al.  Natural Fractures , 2019, Selective Neck Dissection for Oral Cancer.