Nanoparticle synthesis assisted by machine learning

[1]  Kristofer G. Reyes,et al.  Self‐Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow , 2020, Adv. Intell. Syst..

[2]  Robert W. Epps,et al.  Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation , 2020, Advanced materials.

[3]  Alessandro Blasimme,et al.  Explainability for artificial intelligence in healthcare: a multidisciplinary perspective , 2020, BMC Medical Informatics and Decision Making.

[4]  Alán Aspuru-Guzik,et al.  Data-science driven autonomous process optimization , 2020, Communications Chemistry.

[5]  Isaac Tamblyn,et al.  Scientific intuition inspired by machine learning-generated hypotheses , 2020, Mach. Learn. Sci. Technol..

[6]  Matteo Aldeghi,et al.  Olympus: a benchmarking framework for noisy optimization and experiment planning , 2020, Mach. Learn. Sci. Technol..

[7]  Leroy Cronin,et al.  A universal system for digitization and automatic execution of the chemical synthesis literature , 2020, Science.

[8]  C. Mirkin,et al.  Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission , 2020, Science Advances.

[9]  Haitao Yang,et al.  AI Applications through the Whole Life Cycle of Material Discovery , 2020, Matter.

[10]  Qianxiao Li,et al.  Two-step machine learning enables optimized nanoparticle synthesis , 2020, npj Computational Materials.

[11]  Reiner Sebastian Sprick,et al.  A mobile robotic chemist , 2020, Nature.

[12]  Ian M. Pendleton,et al.  Robot-Accelerated Perovskite Investigation and Discovery , 2020, Chemistry of Materials.

[13]  Robert W. Epps,et al.  Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot , 2020, Advanced materials.

[14]  Qianxiao Li,et al.  Inverse design of crystals using generalized invertible crystallographic representation , 2020, ArXiv.

[15]  Jiagen Li,et al.  Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab , 2020, Nature Communications.

[16]  Benjamin J. Bucior,et al.  Inverse design of nanoporous crystalline reticular materials with deep generative models , 2020, Nature Machine Intelligence.

[17]  E. Sargent,et al.  Machine-Learning-Accelerated Perovskite Crystallization , 2020, Matter.

[18]  Riley J. Hickman,et al.  Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge , 2020, 2003.12127.

[19]  Marinka Zitnik,et al.  Interpretability of machine learning‐based prediction models in healthcare , 2020, WIREs Data Mining Knowl. Discov..

[20]  B. Auguié,et al.  Correction to Combined Extinction and Absorption UV-Visible Spectroscopy as a Method for Revealing Shape Imperfections of Metallic Nanoparticles. , 2020, Analytical chemistry.

[21]  Jiagen Li,et al.  Toward “On‐Demand” Materials Synthesis and Scientific Discovery through Intelligent Robots , 2020, Advanced science.

[22]  G. Khayati,et al.  A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm , 2020 .

[23]  Terrence J Sejnowski,et al.  The unreasonable effectiveness of deep learning in artificial intelligence , 2020, Proceedings of the National Academy of Sciences.

[24]  D. Astruc Introduction: Nanoparticles in Catalysis. , 2020, Chemical reviews.

[25]  K. Pardee,et al.  When robotics met fluidics. , 2020, Lab on a chip.

[26]  Jonathan Grizou,et al.  A curious formulation robot enables the discovery of a novel protocell behavior , 2020, Science Advances.

[27]  David T. Jones,et al.  Improved protein structure prediction using potentials from deep learning , 2020, Nature.

[28]  David J. Buttler,et al.  Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge , 2019, J. Chem. Inf. Model..

[29]  Alán Aspuru-Guzik,et al.  Inverse Design of Solid-State Materials via a Continuous Representation , 2019, Matter.

[30]  A. Nasibulin,et al.  Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method , 2019, Carbon.

[31]  A. Nasibulin,et al.  Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films. , 2019, The journal of physical chemistry letters.

[32]  B. Auguié,et al.  Combined extinction and absorption UV-vis spectroscopy reveals shape imperfections of metallic nanoparticles. , 2019, Analytical chemistry.

[33]  Zurina Zainal Abidin,et al.  Sustainable Synthesis Processes for Carbon Dots through Response Surface Methodology and Artificial Neural Network. , 2019, Processes.

[34]  O. Voznyy,et al.  Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. , 2019, ACS nano.

[35]  Rainer Hofmann-Wellenhof,et al.  A deep learning system for differential diagnosis of skin diseases , 2019, Nature Medicine.

[36]  Alán Aspuru-Guzik,et al.  Beyond Ternary OPV: High‐Throughput Experimentation and Self‐Driving Laboratories Optimize Multicomponent Systems , 2019, Advanced materials.

[37]  S. Özkar,et al.  LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data , 2019, Chemistry of Materials.

[38]  Alán Aspuru-Guzik,et al.  Deep learning enables rapid identification of potent DDR1 kinase inhibitors , 2019, Nature Biotechnology.

[39]  R. Leblanc,et al.  Size-Dependent Photocatalytic Activity of Carbon Dots with Surface-State Determined Photoluminescence. , 2019, Applied catalysis. B, Environmental.

[40]  Jonathan Grizou,et al.  A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles , 2019, Nature Communications.

[41]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[42]  M. Ceriotti,et al.  Evidence for supercritical behaviour of high-pressure liquid hydrogen , 2019, Nature.

[43]  Brian L. DeCost,et al.  Accelerated Development of Perovskite-Inspired Materials via High-Throughput Synthesis and Machine-Learning Diagnosis , 2018, Joule.

[44]  Junsang Cho,et al.  Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime , 2019, Chemistry of Materials.

[45]  Turab Lookman,et al.  Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design , 2019, npj Computational Materials.

[46]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[47]  Leroy Cronin,et al.  Organic synthesis in a modular robotic system driven by a chemical programming language , 2019, Science.

[48]  Daniel Neagu,et al.  Computational Complexity Analysis of Decision Tree Algorithms , 2018, SGAI Conf..

[49]  Brian L. DeCost,et al.  Accelerating Photovoltaic Materials Development via High-Throughput Experiments and Machine-Learning-Assisted Diagnosis , 2018, 1812.01025.

[50]  Jiali Li,et al.  Deep Learning Accelerated Gold Nanocluster Synthesis , 2018, Adv. Intell. Syst..

[51]  Huihuan Qian,et al.  AIR-Chem: Authentic Intelligent Robotics for Chemistry. , 2018, The journal of physical chemistry. A.

[52]  S. Mhaisalkar,et al.  Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs , 2018, Small Methods.

[53]  K. Tsukagoshi,et al.  Solvent-Mediated Shape Engineering of Fullerene (C60) Polyhedral Microcrystals , 2018, Chemistry of Materials.

[54]  Alán Aspuru-Guzik,et al.  Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories , 2018, Chemical science.

[55]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[56]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[57]  V. Toșa,et al.  Artificial neural networks modeling of the parameterized gold nanoparticles generation through photo-induced process , 2018, Materials Research Express.

[58]  D. Nygren,et al.  Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation , 2018, Scientific Reports.

[59]  Haitao Liu,et al.  When Gaussian Process Meets Big Data: A Review of Scalable GPs , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[60]  Richard M Maceiczyk,et al.  Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics. , 2018, ACS applied materials & interfaces.

[61]  Florian Häse,et al.  Chimera: Enabling Hierarchy Based Multi-Objective Optimization for Self-Driving Laboratories , 2018 .

[62]  T. Lookman,et al.  Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning , 2018, Nature Communications.

[63]  Q. Fang,et al.  Quantitative Identification of Basic Growth Channels for Formation of Monodisperse Nanocrystals. , 2018, Journal of the American Chemical Society.

[64]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[65]  Mingyuan Gao,et al.  Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents , 2018, Advanced materials.

[66]  Stefanie Jegelka,et al.  Virtual screening of inorganic materials synthesis parameters with deep learning , 2017, npj Computational Materials.

[67]  S. Krska,et al.  The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. , 2017, Accounts of chemical research.

[68]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[69]  John Youshia,et al.  Artificial neural network based particle size prediction of polymeric nanoparticles , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[70]  C. Brabec,et al.  Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing , 2017 .

[71]  H. Xin,et al.  Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. , 2017, ACS nano.

[72]  Q. Xiong,et al.  Metal halide perovskite nanomaterials: synthesis and applications , 2016, Chemical science.

[73]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[74]  Rahul Rao,et al.  Autonomy in materials research: a case study in carbon nanotube growth , 2016 .

[75]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[76]  Jianhui Hou,et al.  High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. , 2016, Small.

[77]  Matthew N. O’Brien,et al.  The nature and implications of uniformity in the hierarchical organization of nanomaterials , 2016, Proceedings of the National Academy of Sciences.

[78]  M. Carrière,et al.  Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. , 2016, Chemical reviews.

[79]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[80]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[81]  Rania A. H. Ishak,et al.  Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. , 2016, International journal of biological macromolecules.

[82]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[83]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[84]  Oleksandr Voznyy,et al.  High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. , 2015, Nano letters.

[85]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[86]  Prathik Roy,et al.  Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications , 2015 .

[87]  D. Sousa Solution processed quantum dot photodetectors , 2015 .

[88]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[89]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[90]  J. Polte Fundamental growth principles of colloidal metal nanoparticles – a new perspective , 2015 .

[91]  M. Fathi,et al.  Preparation of agar nanospheres: comparison of response surface and artificial neural network modeling by a genetic algorithm approach. , 2015, Carbohydrate polymers.

[92]  Jianbo Gao,et al.  Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. , 2015, The journal of physical chemistry letters.

[93]  L. Liz‐Marzán,et al.  Modern Applications of Plasmonic Nanoparticles: From Energy to Health , 2015 .

[94]  Andrew J. deMello,et al.  Online detection and automation methods in microfluidic nanomaterial synthesis , 2015 .

[95]  J. Jasieniak,et al.  The heat-up synthesis of colloidal nanocrystals , 2015 .

[96]  H. Choi,et al.  Selective Growth of a C70 Crystal in a Mixed Solvent System: From Cube to Tube , 2015 .

[97]  Emory M. Chan,et al.  Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. , 2015, Chemical Society reviews.

[98]  Bai Yang,et al.  The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective , 2015, Nano Research.

[99]  Jie Li,et al.  PDB-wide collection of binding data: current status of the PDBbind database , 2015, Bioinform..

[100]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[101]  Giulia Bonacucina,et al.  Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks , 2014, International journal of nanomedicine.

[102]  Andrew J. deMello,et al.  Fast and Reliable Metamodeling of Complex Reaction Spaces Using Universal Kriging , 2014 .

[103]  E. Kumacheva,et al.  Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. , 2014, Lab on a chip.

[104]  Eugenia Kumacheva,et al.  Self-assembled plasmonic nanostructures. , 2014, Chemical Society reviews.

[105]  R. Haag,et al.  A Universal Approach to Crosslinked Hierarchical Polymer Multilayers as Stable and Highly Effective Antifouling Coatings , 2014, Advanced materials.

[106]  Yao Zheng,et al.  Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution , 2014, ACS nano.

[107]  Changqin Ding,et al.  Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. , 2014, Accounts of chemical research.

[108]  Lin-Yue Lanry Yung,et al.  Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. , 2013, Nanoscale.

[109]  A. R. Daud,et al.  A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles , 2013, Nanoscale Research Letters.

[110]  Vinit Kumar,et al.  Fluorescent carbon nanoparticles in medicine for cancer therapy. , 2013, ACS medicinal chemistry letters.

[111]  Jianding Qiu,et al.  Using graphene quantum dots as photoluminescent probes for protein kinase sensing. , 2013, Analytical chemistry.

[112]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[113]  Xinglu Huang,et al.  Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. , 2013, Journal of the American Chemical Society.

[114]  Nikhil R. Jana,et al.  Carbon Nanoparticle-based Fluorescent Bioimaging Probes , 2013, Scientific Reports.

[115]  Na Li,et al.  State of the art in gold nanoparticle synthesis , 2013 .

[116]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[117]  F. Wise,et al.  A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. , 2012, Nano letters.

[118]  S. Rezayat,et al.  Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study , 2012, Pharmaceutical development and technology.

[119]  Kenichi Yamashita,et al.  Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses , 2012 .

[120]  Jianmin Qu,et al.  Size dependent thermal conductivity of single-walled carbon nanotubes , 2012 .

[121]  C. Kappe,et al.  Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals , 2012 .

[122]  Antonio Criminisi,et al.  Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2012, Found. Trends Comput. Graph. Vis..

[123]  F. Schué,et al.  Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) , 2012 .

[124]  Luigi Carbone,et al.  Microwave-assisted synthesis of colloidal inorganic nanocrystals. , 2011, Angewandte Chemie.

[125]  U. Krull,et al.  Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. , 2011, Analytica chimica acta.

[126]  T. Hyeon,et al.  Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. , 2011, Small.

[127]  S. Khondaker,et al.  Graphene based materials: Past, present and future , 2011 .

[128]  R. Schlögl,et al.  In situ characterization of alloy catalysts for low-temperature graphene growth. , 2011, Nano letters.

[129]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[130]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[131]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[132]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[133]  Hui Huang,et al.  One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties , 2011 .

[134]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[135]  V. Chikán,et al.  Quantized Ostwald Ripening of Colloidal Nanoparticles , 2010 .

[136]  Hiroyuki Nakamura,et al.  Combinatorial Synthesis of CdSe Nanoparticles Using Microreactors , 2010 .

[137]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[138]  Ravindran Girija Aswathy,et al.  Near-infrared quantum dots for deep tissue imaging , 2010, Analytical and bioanalytical chemistry.

[139]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[140]  Markus Antonietti,et al.  Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass , 2010, Advances in Materials.

[141]  Edward H. Sargent,et al.  Solution-Processed Quantum Dot Photodetectors , 2009, Proceedings of the IEEE.

[142]  Fan Yang,et al.  Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. , 2009, Chemical communications.

[143]  Christine Vauthier,et al.  Methods for the Preparation and Manufacture of Polymeric Nanoparticles , 2009, Pharmaceutical Research.

[144]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[145]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[146]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[147]  A. deMello,et al.  Intelligent routes to the controlled synthesis of nanoparticles. , 2007, Lab on a chip.

[148]  Timothy Thatt Yang Tan,et al.  Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots , 2007 .

[149]  D. Fernig,et al.  Determination of size and concentration of gold nanoparticles from UV-vis spectra. , 2007, Analytical chemistry.

[150]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[151]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[152]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[153]  Jason Weston,et al.  Fast Kernel Classifiers with Online and Active Learning , 2005, J. Mach. Learn. Res..

[154]  Tao Wang,et al.  Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. , 2005, Colloids and surfaces. B, Biointerfaces.

[155]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[156]  E. Kumacheva,et al.  Monodisperse chitosan nanoparticles for mucosal drug delivery. , 2004, Biomacromolecules.

[157]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[158]  Young Woon Kim,et al.  Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. , 2003, Journal of the American Chemical Society.

[159]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[160]  J. Friedman Stochastic gradient boosting , 2002 .

[161]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[162]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[163]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[164]  Darren M. Dawson,et al.  Design and Implementation of the Robotic Platform , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[165]  J. Levy Quantum-information processing with ferroelectrically coupled quantum dots , 2001, quant-ph/0101026.

[166]  Zhengwei Pan,et al.  Mechanical and physical properties on carbon nanotube , 2000 .

[167]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[168]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[169]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[170]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[171]  Takeda,et al.  Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. , 1992, Physical review. B, Condensed matter.

[172]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[173]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[174]  A. Amani,et al.  Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study. , 2017, Journal of pharmaceutical sciences.

[175]  Roberto Battiti,et al.  Learning and Intelligent Optimization , 2017, Lecture Notes in Computer Science.

[176]  O. Isayev,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force fi eld computational cost † , 2017 .

[177]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[178]  G. Ozin,et al.  Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells , 2012 .

[179]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[180]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[181]  J. S. Hunter,et al.  Statistics for Experimenters: Design, Innovation, and Discovery , 2006 .

[182]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .