The most important microtubule natural inhibitors.

Natural microtubule inhibitors represent chemically very variegated family of structures with strong effect on cytoskeletal functions and the use of them is one of the most frequent therapeutic strategies for carcinoma treatment. The survey of the most important natural microtubule inhibitors is summarized in this paper.

[1]  M. Ghielmini,et al.  In vitro schedule-dependency of myelotoxicity and cytotoxicity of Ecteinascidin 743 (ET-743). , 1998, Annals of oncology : official journal of the European Society for Medical Oncology.

[2]  R. Himes,et al.  Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. , 1997, Biochemistry.

[3]  A. Balog,et al.  Totalsynthese von ( ‐ )‐Epothilon B: eine Erweiterung der Suzuki‐Kupplung und Erkenntnisse über Struktur‐Wirkungs‐Beziehungen der Epothilone , 1997 .

[4]  M. Goeldner,et al.  [3H](azidophenyl)ureido taxoid photolabels peptide amino acids 281-304 of alpha-tubulin. , 1997, Biochemistry.

[5]  P. Giannakakou,et al.  Activities of the Microtubule-stabilizing Agents Epothilones A and B with Purified Tubulin and in Cells Resistant to Paclitaxel (Taxol®)* , 1997, The Journal of Biological Chemistry.

[6]  C. Croce,et al.  Bcl2 is the guardian of microtubule integrity. , 1997, Cancer research.

[7]  K. Nicolaou,et al.  DIE TOTALSYNTHESE VON EPOTHILON A : DER ZUGANG DURCH OLEFINMETATHESE , 1997 .

[8]  N. Tapon,et al.  Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. , 1997, Current opinion in cell biology.

[9]  T. Fojo,et al.  Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. , 1997, Cancer research.

[10]  A. Balog,et al.  Totalsynthese von (—)‐Epothilon A , 1996 .

[11]  B. Zhivotovsky,et al.  Lamin and beta-tubulin fragmentation precede chromatin degradation in glutamate-induced neuronal apoptosis. , 1996, Neuroreport.

[12]  A. Quesada,et al.  Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. , 1996, British Journal of Cancer.

[13]  R. G. Hughes,et al.  Structure−Activity Relationships of the Didemnins1,2 , 1996 .

[14]  H. Reichenbach,et al.  Epothilone A and B—Novel 16-Membered Macrolides with Cytotoxic Activity: Isolation, Crystal Structure, and Conformation in Solution† , 1996 .

[15]  H Irschik,et al.  Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. , 1996, The Journal of antibiotics.

[16]  J. Wolff,et al.  Localization of the Vinblastine-binding Site on β-Tubulin* , 1996, The Journal of Biological Chemistry.

[17]  F. Sánchez-Jiménez,et al.  Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. , 1996, Cancer letters.

[18]  J. Ávila,et al.  Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. , 1996, British Journal of Cancer.

[19]  M. Boyd,et al.  Comparative antitumor activities of halichondrins and vinblastine against human tumor xenografts. , 1996, Journal of experimental therapeutics and oncology.

[20]  E. Hamel Antimitotic natural products and their interactions with tubulin , 1996, Medicinal research reviews.

[21]  J. Wolff,et al.  Localization of the vinblastine-binding site on beta-tubulin. , 1996, The Journal of biological chemistry.

[22]  R. G. Hughes,et al.  Structure--activity relationships of the didemnins. , 1996, Journal of medicinal chemistry.

[23]  P. Carroll,et al.  The cyclic depsipeptide backbone of the didemnins. , 1995, Acta Crystallographica Section C: Crystal Structure Communications.

[24]  P. Millner,et al.  Association of multiple GTP-binding proteins with the plant cytoskeleton and nuclear matrix. , 1995, Biochemical and biophysical research communications.

[25]  J. Phillipson Monoterpene Indole Alkaloids: edited by J. E. Saxton, The Chemistry of Heterocyclic Compounds, Supplement to Vol. 25, Part 4. (Series editor E.C. Tylor). John Wiley, Chichester, 1994. Price £175. ISBN 0-471-951129. , 1995 .

[26]  R. Parsons,et al.  Requirement of a colchicine‐sensitive component of the cytoskeleton for acetylcholine receptor recovery , 1995, British journal of pharmacology.

[27]  M. Rasenick,et al.  Tubulin-G protein association stabilizes GTP binding and activates GTPase: cytoskeletal participation in neuronal signal transduction. , 1994, Biochemistry.

[28]  C. Smith,et al.  Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. , 1994, Cancer research.

[29]  G. Hajnóczky,et al.  Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton. , 1994, The Journal of biological chemistry.

[30]  K. Nicolaou,et al.  Total synthesis of taxol , 1994, Nature.

[31]  Z. Cichacz,et al.  Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. , 1993, Molecular pharmacology.

[32]  L. Bourguignon,et al.  The involvement of the cytoskeleton in regulating IP3 receptor‐mediated internal Ca2+ release in human blood platelets. , 1993, Cell biology international.

[33]  Christian Rosenmund,et al.  Calcium-induced actin depolymerization reduces NMDA channel activity , 1993, Neuron.

[34]  L. Byerly,et al.  A Cytoskeletal Mechanism for Ca2+ Channel Metabolic Dependence and Inactivation by Intracellular Ca2+ , 1993, Neuron.

[35]  D. Bissett,et al.  Phase I and pharmacokinetic study of rhizoxin. , 1992, Cancer research.

[36]  M. Boyd,et al.  Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. , 1991, Journal of medicinal chemistry.

[37]  R. Longley,et al.  DISCODERMOLIDE—A NEW, MARINE‐DERIVED IMMUNOSUPPRESSIVE COMPOUND: II. IN VIVO STUDIES , 1991, Transplantation.

[38]  R. Longley,et al.  DISCODERMOLIDE—A NEW, MARINE‐DERIVED IMMUNOSUPPRESSIVE COMPOUND: I. IN VITRO STUDIES , 1991, Transplantation.

[39]  K D Paull,et al.  Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. , 1991, The Journal of biological chemistry.

[40]  A. Bershadsky,et al.  Microtubule dynamics: mechanism, regulation, and function. , 1991, Annual review of cell biology.

[41]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[42]  M. Kirschner,et al.  Microtubule dynamics , 1986, Nature.