Direct methods and ADI‐preconditioned Krylov subspace methods for generalized Lyapunov equations

We consider linear matrix equations where the linear mapping is the sum of a standard Lyapunov operator and a positive operator. These equations play a role in the context of stochastic or bilinear control systems. To solve them efficiently one can fall back on known efficient methods developed for standard Lyapunov equations. In this paper, we describe a direct and an iterative method based on this idea. The direct method is applicable if the generalized Lyapunov operator is a low-rank perturbation of a standard Lyapunov operator; it is related to the Sherman–Morrison–Woodbury formula. The iterative method requires a stability assumption; it uses convergent regular splittings, an alternate direction implicit iteration as preconditioner, and Krylov subspace methods. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[2]  D. Hinrichsen,et al.  Newton's method for a rational matrix equation occurring in stochastic control , 2001 .

[3]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[4]  H. Schneider Positive operators and an inertia theorem , 1965 .

[5]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[6]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[7]  E. Wachspress Optimum Alternating-Direction-Implicit Iteration Parameters for a Model Problem , 1962 .

[8]  E. Collins,et al.  Efficient solution of linearly coupled Lyapunov equations , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[10]  I. Moret A Note on the Superlinear Convergence of GMRES , 1997 .

[11]  D. Kleinman On the stability of linear stochastic systems , 1969 .

[12]  James Lam,et al.  On H2 model reduction of bilinear systems , 2002, Autom..

[13]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[14]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[15]  Alan J. Laub,et al.  Algorithm 705; a FORTRAN-77 software package for solving the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[16]  W. Wonham On a Matrix Riccati Equation of Stochastic Control , 1968 .

[17]  E. Collins,et al.  Efficient computation of the solutions to modified Lyapunov equations , 1993 .

[18]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[19]  Eugene L. Wachspress,et al.  Solution of lyapunov equations by alternating direction implicit iteration , 1991 .

[20]  Joseph P Mesko,et al.  Energy Functions and Algebraic Gramians for Bilinear Systems , 1998 .

[21]  T. Damm Rational Matrix Equations in Stochastic Control , 2004 .

[22]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[23]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[24]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[25]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[26]  W. Vetter Vector structures and solutions of linear matrix equations , 1975 .

[27]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[28]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[29]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[30]  Rajendra S. Katti,et al.  The Iterative Solution of Lyapunov Equations , 1995, PPSC.

[31]  Michael A. Epton Methods for the solution ofAXD−BXC=E and its application in the numerical solution of implicit ordinary differential equations , 1980 .

[32]  Emmanuel G. Collins,et al.  Efficient Solution of Linearly Coupled Lyapunov Equations , 1997 .

[33]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[34]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[35]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[36]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[37]  M. Bettayeb,et al.  A new model reduction scheme for k-power bilinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.