A Born Model Calculation of the Energies of Schottky Pair Formation and Cation Migration in Potassium Azide

Calculations are presented for the energy of Schottky pair formation and for the activation energy of cation vacancy migration in potassium azide (KN3). Parameters for the repulsive overlap energy of the azide molecule ion have been derived from a Born model treatment of the lattice interactions with the cohesive energy and its first and second derivatives used in the fitting procedure. Three different representations of the repulsive potential are considered. Point defect calculations are performed first in a rigid lattice approximation and then with the effects of polarization and relaxation included. The polarization energy is calculated by a generalized Mott and Littleton method, which accounts for the anisotropy of the lattice, in both zeroth and first order approximations. Relaxations include displacements and rotations of nearest neighbors of the defect configurations. The sensitivity of the results t o the choice of a repulsive potential are discussed. L'energie de formation d'une paire de Schottky et l'energie d'activation pour la migration d'une lacune de cation ont ete calculees pour le nitrure de potassium (KN3). Des parametres pour l'energie de repulsion venant du chevauchement de l'ion-molecule nitrure ont At obtenus en traitant les interactions du reseau a l'aide d'un modiele de Born, et l'energie de cohesion ainsi que ses derivees premiere et seconde ont ete utilisees pour obtener la meilleure correlation. Trois differentes representations du potentiel de repulsion sont considerees. Les calculs sur les defauts ponctuels sont faits d'abord dans I'approximation du reseau rigide, ensuite en tenant compte des effects de polarisation et de relaxation. L'energie de polarisation est calculee par une methode de Mott et Littleton generalisee, qui tient compte de I'anisotropie du reseau dans I'approximation d'ordre zero et dans celle du premier ordre. Les phenomienes de relaxation comprennent les deplacements et les rotations des plus proches voisins du complexe du defaut. La depenidance des resultats au choix des potentiels de repulsion est discutee.

[1]  S. Block,et al.  Compressibility of Inorganic Azides , 1970 .

[2]  J. P. Hardy,et al.  Theoretical calculations of the properties of point defects in solids , 1970 .

[3]  G. Dienes,et al.  LOW-TEMPERATURE VOLUME EXPANSION OF LiH: LiT. , 1970 .

[4]  V. Verneker,et al.  DC Ionic Conductivity of Potassium Azide , 1970 .

[5]  V. Verneker,et al.  Ionic Conductance of Potassium Azide in the Solid State , 1969 .

[6]  A. G. Piken,et al.  Lattice self-potentials and madelung constants for some compounds , 1969 .

[7]  D. Lynch On van der Waals dipole-dipole coefficients in alkali halides , 1967 .

[8]  I. Boswarva,et al.  The energy of formation of Schottky defects in ionic crystals , 1967 .

[9]  M. Tosi,et al.  Vacancies and Monovalent Cation Impurities in the Alkali Halides , 1966 .

[10]  I. Campbell,et al.  Distribution of Charge on the Azide Ion in NaN3 , 1966 .

[11]  K. L. Kliewer Space Charge in Ionic Crystals. II. The Electron Affinity and Impurity Accumulation , 1965 .

[12]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[13]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[14]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[15]  N. S. Ham Electronic Interaction in the Free-Electron Network Model for Conjugated Systems. III. Spectra of Hydrocarbons Other Than Even Alternants , 1960 .

[16]  R. Dreyfus,et al.  Preparation and properties of crystals of potassium and sodium azide , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  P. Gray,et al.  Thermochemistry and reactivity of the azides - II. Lattice energies of ionic azides, electron affinity and heat of formation of the azide radical and related properties , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  P. Jacobs,et al.  Ionic Conductance of Some Solid Metallic Azides , 1955 .

[19]  A. H. Kahn,et al.  Electronic Polarizabilities of Ions in Crystals , 1953 .

[20]  K. Lehovec Space‐Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals , 1953 .

[21]  N. F. Mott,et al.  Conduction in polar crystals. I. Electrolytic conduction in solid salts , 1938 .

[22]  Hans Mueller,et al.  Theory of the Photoelastic Effect of Cubic Crystals , 1935 .