Whitney Forms of Higher Degree

Low-order Whitney elements are widely used for electromagnetic field problems. Higher-order approximations are receiving increasing interest, but their definition remains unduly complex. In this paper we propose a new simple construction for Whitney $p$-elements of polynomial degree higher than one that use only degrees of freedom associated to $p$-chains. We provide a basis for these elements on simplicial meshes and give a geometrical localization of all degrees of freedom. Properties of the higher-order Whitney complex are deeply investigated.

[1]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[2]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[3]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[4]  J. Schöberl,et al.  High order Nédélec elements with local complete sequence properties , 2005 .

[5]  J. P. Webb,et al.  Hierarchal Scalar and vector Tetrahedra , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[6]  Ralf Hiptmair,et al.  HIGHER ORDER WHITNEY FORMS , 2001 .

[7]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[8]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[9]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[10]  M. Ainsworth Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Leszek Demkowicz,et al.  Nédélec spaces in affine coordinates , 2005 .

[12]  H. Whitney Geometric Integration Theory , 1957 .

[13]  Alain Bossavit,et al.  Generating Whitney forms of polynomial degree one and higher , 2002 .

[14]  A. Kameari,et al.  Symmetric second order edge elements for triangles and tetrahedra , 1999 .

[15]  R. Ho Algebraic Topology , 2022 .

[16]  F. Rapetti High order edge elements on simplicial meshes , 2007 .

[17]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[18]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[19]  A. Bossavit,et al.  Geometrical localisation of the degrees of freedom for whitney elements of higher order , 2006 .

[20]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..