Towards observing extrasolar giant-planet environments with JWST

With its high Strehl ratio near- and mid-infrared imaging capabilities, wide field of view, and multiple spectroscopic options, the James Webb Space Telescope (JWST) will provide crucial information on the circumstellar environments of stars thought to harbor debris disks, brown dwarfs or extrasolar giant planets. However, the successful study of such faint targets around nearby, bright stars requires the effective removal of the target star's contribution from the image. In this work, we use simple models of the temporal behavior JWST's wavefront error of JWST over time to examine whether frequent measurements of that changing wavefront can be used to provide an effective point spread function subtraction for high-contrast imaging studies without use of coronagraphic techniques.

[1]  John E. Krist,et al.  NIRCAM image simulations for NGST wavefront sensing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  Rene Doyon,et al.  Ground-Based Direct Detection of Exoplanets with the Gemini Planet Imager (GPI) , 2007 .

[3]  Bernard J. Rauscher,et al.  Independent testing of JWST detector prototypes , 2004, SPIE Optics + Photonics.

[4]  Markus Loose,et al.  HAWAII-2RG: a 2k x 2k CMOS multiplexer for low and high background astronomy applications , 2003, SPIE Astronomical Telescopes + Instrumentation.

[5]  Markus Loose,et al.  High-performance focal plane arrays based on the HAWAII-2RG/4G and the SIDECAR ASIC , 2007, SPIE Optical Engineering + Applications.

[6]  Marcia J. Rieke,et al.  Limits on routine wavefront sensing with NIRCam on JWST , 2004, SPIE Astronomical Telescopes + Instrumentation.

[7]  John E. Krist,et al.  WFPC2 Images of a Face-on Disk Surrounding TW Hydrae , 2000 .

[8]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[9]  D. Scott Acton,et al.  Aligning and maintaining the optics for the James Webb Space Telescope (JWST) on-orbit: the wavefront sensing and control concept of operations , 2006, SPIE Astronomical Telescopes + Instrumentation.

[10]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[11]  Paul A. Lightsey,et al.  Optical performance for the James Webb Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[12]  Paul A. Lightsey,et al.  Optical performance modeling of the James Webb Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[14]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[15]  T. Lauer The Photometry of Undersampled Point-Spread Functions , 1999, astro-ph/9907100.

[16]  Stefano Casertano Some Considerations on PSF Asymmetry and its Impact on the Measurement of Galaxy Shapes , 2002 .

[17]  Thomas J. Grycewicz,et al.  Focal Plane Arrays for Space Telescopes III , 2004 .

[18]  Russell B. Makidon,et al.  Temporal Evolution of Coronagraphic Dynamic Range and Constraints on Companions to Vega , 2006, astro-ph/0609337.

[19]  Colin R. Cox,et al.  Point-spread function modeling for the James Webb Space Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.