The L1 Penalty Function Method for Nonconvex differentiable Optimization Problems with inequality Constraints

In this paper, some new results on the l1 exact penalty function method are presented. A simple optimality characterization is given for the nonconvex differentiable optimization problems with inequality constraints via the l1 exact penalty function method. The equivalence between sets of optimal solutions in the original mathematical programming problem and its associated exact penalized optimization problem is established under suitable r-invexity assumption. The penalty parameter is given, above which this equivalence holds. Furthermore, the equivalence between a saddle point in the considered nonconvex mathematical programming problem with inequality constraints and a minimizer in its penalized optimization problem with the l1 exact penalty function is also established.

[1]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[2]  R. Fletcher Practical Methods of Optimization , 1988 .

[3]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[4]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[5]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[6]  Tadeusz Antczak,et al.  (p, r)-Invex Sets and Functions☆ , 2001 .

[7]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[8]  Roger Fletcher,et al.  An exact penalty function for nonlinear programming with inequalities , 1973, Math. Program..

[9]  T. Antczak,et al.  Υ -preinvexity and Υ -invexity in mathematical programming , 2005 .

[10]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[11]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[12]  Christakis Charalambous,et al.  On conditions for optimality of the nonlinearl1 problem , 1979, Math. Program..

[13]  D. Luenberger Control problems with kinks , 1970 .

[14]  D. Bertsekas,et al.  Enhanced Optimality Conditions and Exact Penalty Functions , 2000 .

[15]  O. Mangasarian Sufficiency of exact penalty minimization , 1985 .

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  D. Bertsekas,et al.  Enhanced Optimality Conditions and Exact Penalty Functions 1 , 2000 .

[18]  Tadeusz Antczak,et al.  Exact penalty functions method for mathematical programming problems involving invex functions , 2009, Eur. J. Oper. Res..

[19]  L. Grippo,et al.  An exact penalty function method with global convergence properties for nonlinear programming problems , 1986, Math. Program..

[20]  I. I. Eremin The penalty method in convex programming , 1967 .

[21]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[22]  Torkel Glad,et al.  A multiplier method with automatic limitation of penalty growth , 1979, Math. Program..

[23]  Christakis Charalambous,et al.  A lower bound for the controlling parameters of the exact penalty functions , 1978, Math. Program..

[24]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .