Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA , IDH 1 , EGFR , and NF 1 Citation Verhaak

[1]  D. Nelson,et al.  Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. , 1993, Journal of the National Cancer Institute.

[2]  P. Kleihues,et al.  Epidemiology and etiology of gliomas , 2005, Acta Neuropathologica.

[3]  A. Verma MGMT Gene Silencing and Benefit From Temozolomide in Glioblastoma , 2006 .

[4]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[5]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[6]  Gang Qu,et al.  AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets , 2007, Bioinform..

[7]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Horvath,et al.  Gene Expression Profiling of Gliomas Strongly Predicts Survival , 2004, Cancer Research.

[9]  E. Domany,et al.  Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Tracy T Batchelor,et al.  A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. , 2006, Cancer research.

[11]  T. Golub,et al.  Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. , 2003, Cancer research.

[12]  Jayant P. Menon,et al.  Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. , 2006, Cancer cell.

[13]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[14]  Alan R. Dabney ClaNC: point-and-click software for classifying microarrays to nearest centroids , 2006, Bioinform..

[15]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[16]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[17]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[18]  T. Yoshimoto,et al.  Amplification of alpha-platelet-derived growth factor receptor gene lacking an exon coding for a portion of the extracellular region in a primary brain tumor of glial origin. , 1992, Oncogene.

[19]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[20]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[21]  Nicholas J. Wang,et al.  Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. , 2009, Neuro-oncology.

[22]  M. Noble,et al.  Getting a GR(i)P on oligodendrocyte development. , 2004, Developmental biology.

[23]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[24]  M. Faist,et al.  The role of tumor resection in the treatment of glioblastoma multiforme in adults , 1999, Cancer.

[25]  S. Levy,et al.  Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Vandenberg,et al.  PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling , 2006, Neuron.

[27]  Robert Gentleman,et al.  matchprobes: a Bioconductor package for the sequence-matching of microarray probe elements , 2004, Bioinform..

[28]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[29]  D. Botstein,et al.  Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Paul S Mischel,et al.  Identification of molecular subtypes of glioblastoma by gene expression profiling , 2003, Oncogene.

[31]  Koji Yoshimoto,et al.  Distinct transcription profiles of primary and secondary glioblastoma subgroups. , 2006, Cancer research.

[32]  C. Brennan,et al.  Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations , 2009, PloS one.

[33]  D. Burns,et al.  Neurofibromas in NF1: Schwann Cell Origin and Role of Tumor Environment , 2002, Science.

[34]  Y. Yonekawa,et al.  Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. , 1996, Brain pathology.

[35]  P. Kleihues,et al.  Primary and secondary glioblastomas: from concept to clinical diagnosis. , 1999, Neuro-oncology.

[36]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[37]  A. Nobel,et al.  Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data , 2008 .

[38]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[39]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[40]  Pedro Martínez,et al.  Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling , 2006, Molecular Cancer.

[41]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[42]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[43]  W. Curran,et al.  Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. , 1998, International journal of radiation oncology, biology, physics.

[44]  Paul S Mischel,et al.  Gene expression profiling identifies molecular subtypes of gliomas , 2003, Oncogene.

[45]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[46]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[47]  J. Rey,et al.  Early genetic changes involved in low-grade astrocytic tumor development. , 2006, Current molecular medicine.