Computer Simulation Studies of Anisotropic Systems, III. Two-Dimensional Nematic Liquid Crystals

Abstract We have studied a two-dimensional ensemble of cylindrically symmetric particles interacting via a weak anisotropic potential using the Monte Carlo technique of computer simulation. The calculation is simplified by confining the particles to the sites of a triangular lattice. The internal energy, specific heat, second rank orientational order parameter and second rank orientational pair correlation function were calculated at various temperatures. The variation of the order parameter and pair correlation function shows that the system exhibits a transition from an orientationally disordered to a partially ordered phase. The temperature dependence of the specific heat suggests that the transition is second order or higher. The possibility of the existence of order-disorder transitions in two dimensions is discussed. The results of the simulation are then compared with the predictions of a molecular field theory of orientational phase transitions. As expected the theory is found to be in poor agreem...

[1]  T. Ruijgrok,et al.  Monte-Carlo study of the Maier-Saupe model on square and triangle lattices , 1977 .

[2]  G. R. Luckhurst,et al.  Computer Simulation Studies of Anisotropic Systems, I. A Linear Lattice , 1977 .

[3]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[4]  P. Vuillermot,et al.  Absence of ordering in a class of lattice systems , 1975 .

[5]  S. Chakravarty,et al.  Short-range correlations in two-dimensional liquid crystals , 1975 .

[6]  R. Olness,et al.  Two‐dimensional computer studies of crystal stability and fluid viscosity , 1974 .

[7]  Jacques Vieillard‐Baron,et al.  Phase Transitions of the Classical Hard‐Ellipse System , 1972 .

[8]  J. P. Straley,et al.  Liquid Crystals in Two Dimensions , 1971 .

[9]  R. E. Watson,et al.  Classical Heisenberg Magnet in Two Dimensions , 1970 .

[10]  K. Lakatos Statistics of a Two‐Dimensional Gas of Long Thin Rods , 1969 .

[11]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  W. Maier,et al.  Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes , 1958 .

[14]  J. Pople The statistical mechanics of assemblies of axially symmetric molecules - I. General theory , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  H. Betsuyaku Monte Carlo investigation of magnetic properties of a two-dimensional classical Heisenberg magnet , 1978 .

[16]  M. Kleman,et al.  A note on two‐dimensional nematic systems , 1976 .

[17]  G. R. Luckhurst,et al.  Molecular field treatment of nematic liquid crystals , 1972 .

[18]  L. Blum,et al.  Invariant Expansion for Two‐Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation , 1972 .

[19]  P. Gennes Possible experiments on two-dimensional nematics , 1971 .

[20]  A. Einstein Essays in Physics , 1950 .