Singular Vectors, Finite-Time Normal Modes, and Error Growth during Blocking

Abstract The evolution of finite-time singular vectors growing on four-dimensional space–time basic states is studied for cases of block development over the Gulf of Alaska and over the North Atlantic, using a two-level tangent linear model. The initial singular vectors depend quite sensitively on the choice of norm with the streamfunction norm characterized by small-scale baroclinic disturbances, the kinetic energy norm giving intermediate-scale baroclinic disturbances, and the enstophy norm typified by large-scale disturbances with large zonal flow contributions. In all cases, the final evolved singular vectors consist of large-scale equivalent barotropic wave trains across the respective blocking regions. There are close similarities between the evolved singular vectors in each of the norms, particularly for the longer time periods considered, and with corresponding evolved finite-time adjoint modes and evolved maximum sensitivity perturbations. For the longer time periods considered, each of these evo...

[1]  Philippe Courtier,et al.  Sensitivity of forecast errors to initial conditions , 1996 .

[2]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[3]  Dennis L. Hartmann,et al.  Barotropic Instability and Optimal Perturbations of Observed Nonzonal Flows , 1992 .

[4]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[5]  Istvan Szunyogh,et al.  A comparison of Lyapunov and optimal vectors in a low-resolution GCM , 1997 .

[6]  Franco Molteni,et al.  On the operational predictability of blocking , 1990 .

[7]  B. Farrell,et al.  Rapid perturbation growth on spatially and temporally varying oceanic flows determined using an adjoint method: application to the Gulf Stream , 1993 .

[8]  M. Kimoto,et al.  Medium-Range Forecast Skill Variation and Blocking Transition. A Case Study , 1992 .

[9]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[10]  O. Talagrand,et al.  Short-range evolution of small perturbations in a barotropic model , 1988 .

[11]  R. X. Black Deducing Anomalous Wave Source Regions during the Life Cycles of Persistent Flow Anomalies , 1997 .

[12]  J. Whitaker,et al.  An Adjoint Sensitivity Study of Blocking in a Two-Layer Isentropic Model , 1993 .

[13]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[14]  Martin Ehrendorfer,et al.  Optimal Prediction of Forecast Error Covariances through Singular Vectors , 1997 .

[15]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[16]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[17]  J. Frederiksen A Unified Three-Dimensional Instability Theory of the Onset of Blocking and Cyclogenesis , 1982 .

[18]  F. R. Gantmakher The Theory of Matrices , 1984 .

[19]  B. Farrell,et al.  An Adjoint Method for Obtaining the Most Rapidly Growing Perturbation to Oceanic Flows , 1992 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  R. Dole,et al.  Life cycles of persistent anomalies. II - The development of persistent negative height anomalies over the North Pacific Ocean , 1990 .

[22]  J. Greene,et al.  The calculation of Lyapunov spectra , 1987 .

[23]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[24]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[25]  M. Raghunathan A proof of Oseledec’s multiplicative ergodic theorem , 1979 .

[26]  R. Dole,et al.  The Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean , 1993 .

[27]  Phillip Smith,et al.  The role of synoptic/planetary scale interactions during the development of a blocking anticyclone , 1990 .

[28]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[29]  Phillip Smith,et al.  Climatological features of blocking anticyclones in the Northern Hemisphere , 1995 .

[30]  C. Leith Theoretical Skill of Monte Carlo Forecasts , 1974 .

[31]  S. Colucci Explosive Cyclogenesis and Large-Scale Circulation Changes: Implications for Atmospheric Blocking , 1985 .

[32]  J. Frederiksen,et al.  North atlantic blocking during January 1979: Linear theory , 1990 .

[33]  Jorgen S. Frederiksen,et al.  Eddy Viscosity and Stochastic Backscatter Parameterizations on the Sphere for Atmospheric Circulation Models , 1997 .

[34]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[35]  A. Moore The dynamics of error growth and predictability in a model of the Gulf stream. Part II : Ensemble prediction , 1999 .

[36]  Ronald M. Errico,et al.  Singular-Vector Perturbation Growth in a Primitive Equation Model with Moist Physics , 1999 .

[37]  Jeffrey L. Anderson,et al.  Selection of Initial Conditions for Ensemble Forecasts in a Simple Perfect Model Framework , 1996 .

[38]  P. L. Houtekamer The Construction of Optimal Perturbations , 1995 .

[39]  Franco Molteni,et al.  Predictability and finite‐time instability of the northern winter circulation , 1993 .

[40]  Jan Barkmeijer,et al.  Perturbations that optimally trigger weather regimes , 1995 .

[41]  G. North Empirical Orthogonal Functions and Normal Modes , 1984 .

[42]  J. Frederiksen,et al.  Viscosity renormalization based on direct-interaction closure , 1983, Journal of Fluid Mechanics.

[43]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[44]  P. L. Houtekamer,et al.  Methods for Ensemble Prediction , 1995 .

[45]  Ronald M. Errico,et al.  Mesoscale Predictability and the Spectrum of Optimal Perturbations , 1995 .

[46]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[47]  Lennart Bengtsson,et al.  Numerical prediction of atmospheric blocking—A case study , 1981 .

[48]  Brian F. Farrell,et al.  Optimal Excitation of Neutral Rossby Waves , 1988 .

[49]  Jan Barkmeijer Constructing Fast-Growing Perturbations for the Nonlinear Regime , 1996 .

[50]  X. Zou,et al.  An Adjoint Sensitivity Study of the Efficacy of Modal and Nonmodal Perturbations in Causing Model Block Onset , 1998 .

[51]  Roberto Buizza,et al.  Computation of optimal unstable structures for a numerical weather prediction model , 1993 .

[52]  G. Branstator Analysis of General Circulation Model Sea-Surface Temperature Anomaly Simulations Using a Linear Model. Part II: Eigenanalysis , 1985 .

[53]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[54]  Roberto Buizza The Impact of Orographic Forcing on Barotropic Unstable Singular Vectors , 1995 .

[55]  J. Whitaker,et al.  Type B Cyclogenesis in a Zonally Varying Flow , 1992 .

[56]  H. Risken Fokker-Planck Equation , 1984 .