暂无分享,去创建一个
Frédéric Chazal | Marc Glisse | Bertrand Michel | Catherine Labruère | F. Chazal | M. Glisse | B. Michel | C. Labruère
[1] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[2] Vin de Silva,et al. HOMOLOGICAL SENSOR NETWORKS , 2005 .
[3] D. Burago,et al. A Course in Metric Geometry , 2001 .
[4] A. González,et al. Set estimation: another bridge between statistics and geometry , 2009 .
[5] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[6] S. Mukherjee,et al. Probability measures on the space of persistence diagrams , 2011 .
[7] Sivaraman Balakrishnan,et al. Statistical Inference For Persistent Homology , 2013, arXiv.org.
[8] A. Cuevas,et al. On Statistical Properties of Sets Fulfilling Rolling-Type Conditions , 2011, Advances in Applied Probability.
[9] A. Cuevas,et al. A plug-in approach to support estimation , 1997 .
[10] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[11] Bruno Pelletier,et al. Asymptotic Normality in Density Support Estimation , 2009 .
[12] Frédéric Chazal,et al. Convergence rates for persistence diagram estimation in topological data analysis , 2014, J. Mach. Learn. Res..
[13] L. Devroye,et al. Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .
[14] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[15] Leonidas J. Guibas,et al. Persistence-based clustering in riemannian manifolds , 2011, SoCG '11.
[16] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[17] Peter Bubenik,et al. A statistical approach to persistent homology , 2006, math/0607634.
[18] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[19] L. Dümbgen,et al. RATES OF CONVERGENCE FOR RANDOM APPROXIMATIONS OF CONVEX SETS , 1996 .
[20] A. Tsybakov. On nonparametric estimation of density level sets , 1997 .
[21] Robert D. Nowak,et al. Adaptive Hausdorff Estimation of Density Level Sets , 2009, COLT.
[22] Stephen Smale,et al. A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..
[23] Jianzhong Wang,et al. Geometric Structure of High-Dimensional Data and Dimensionality Reduction , 2012 .
[24] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[25] Sivaraman Balakrishnan,et al. Minimax rates for homology inference , 2011, AISTATS.
[26] Frédéric Chazal,et al. Geometric Inference for Probability Measures , 2011, Found. Comput. Math..
[27] Frédéric Chazal,et al. Deconvolution for the Wasserstein Metric and Geometric Inference , 2011, GSI.
[28] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[29] D. Ringach,et al. Topological analysis of population activity in visual cortex. , 2008, Journal of vision.
[30] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[31] Sebastian Thrun,et al. SCAPE: shape completion and animation of people , 2005, SIGGRAPH 2005.
[32] A. Cuevas,et al. On boundary estimation , 2004, Advances in Applied Probability.
[33] H. Edelsbrunner. The union of balls and its dual shape , 1995 .
[34] Larry A. Wasserman,et al. Manifold Estimation and Singular Deconvolution Under Hausdorff Loss , 2011, ArXiv.
[35] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[36] Larry A. Wasserman,et al. Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..
[37] Leonidas J. Guibas,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm250 Structural bioinformatics Persistent voids: a new structural metric for membrane fusion , 2022 .
[38] Peter Bubenik,et al. Statistical topology using persistence landscapes , 2012, ArXiv.
[39] A. Tsybakov,et al. Efficient Estimation of Monotone Boundaries , 1995 .
[40] E. D. Vito,et al. Learning Sets with Separating Kernels , 2012, 1204.3573.
[41] Alberto Rodríguez Casal,et al. Set estimation under convexity type assumptions , 2007 .
[42] Steve Oudot,et al. Persistence stability for geometric complexes , 2012, ArXiv.
[43] R. Ho. Algebraic Topology , 2022 .