Handle and hole improvement by using new corner cutting subdivision scheme with tension

The Doubly Linked Face List (DLFL) structure introduces a powerful modeling paradigm that allows users to alternatively apply topological change operations and subdivision operations on a mesh structure. Moreover the DLFL is topologically robust in the sense that it always guarantees valid 2-manifold surfaces. We further study the relationship between DLFL structure and subdivision algorithms. First, we develop a new corner cutting scheme, which provides a tension parameter to control the shape of the subdivided surface. Second, we develop a careful and efficient algorithm for our corner cutting scheme on the DLFL structure that uses only the basic operations provided by the DLFL structure. This implementation ensures that our new corner cutting scheme preserves topological robustness. The comparative study shows that the corner cutting schemes create better handles and holes than Catmull-Clark (1978) scheme.

[1]  M. Karasick On the representation and manipulation of rigid solids , 1989 .

[2]  Ergun Akleman,et al.  Guaranteeing the 2-Manifold Property for Meshes with doubly Linked Face List , 1999, Int. J. Shape Model..

[3]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[4]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[5]  Kevin Weiler Topological Structures for Geometric Modeling , 1986 .

[6]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[7]  Jianer Chen Algorithmic Graph Embeddings , 1997, Theor. Comput. Sci..

[8]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[9]  Martti Mäntylä,et al.  Boolean operations of 2-manifolds through vertex neighborhood classification , 1986, TOGS.

[10]  Satoshi Matsuoka,et al.  Teddy: A Sketching Interface for 3D Freeform Design , 1999, SIGGRAPH Courses.

[11]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[12]  Ergun Akleman,et al.  A new paradigm for changing topology during subdivision modeling , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[13]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[14]  Alyn P. Rockwood,et al.  Topological design of sculptured surfaces , 1992, SIGGRAPH.

[15]  J. Davenport Editor , 1960 .

[16]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[17]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[18]  WeilerKevin Polygon comparison using a graph representation , 1980 .

[19]  Michael A. Lachance An introduction to splines for use in computer graphics and geometric modeling : . Morgan Kaufmann, Los Altos, CA, 1987. 469 pp.$42.95 , 1990 .

[20]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[21]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[22]  Tosiyasu L. Kunii,et al.  A feature-based approach for smooth surfaces , 1997, SMA '97.

[23]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[24]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[25]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[26]  Christoph M. Hoffmann,et al.  Fundamental Techniques for Geometric and Solid Modeling , 1991 .

[27]  Kevin Weiler Polygon comparison using a graph representation , 1980, SIGGRAPH '80.

[28]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[29]  Dana Nau,et al.  Set operations on polyhedra using decomposition methods , 1989 .

[30]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[31]  Subodh Kumar,et al.  Repairing CAD models , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[32]  Robert Jan. Williams,et al.  The Geometrical Foundation of Natural Structure: A Source Book of Design , 1979 .