Interacting Particle Solutions of Fokker–Planck Equations Through Gradient–Log–Density Estimation

Fokker–Planck equations are extensively employed in various scientific fields as they characterise the behaviour of stochastic systems at the level of probability density functions. Although broadly used, they allow for analytical treatment only in limited settings, and often it is inevitable to resort to numerical solutions. Here, we develop a computational approach for simulating the time evolution of Fokker–Planck solutions in terms of a mean field limit of an interacting particle system. The interactions between particles are determined by the gradient of the logarithm of the particle density, approximated here by a novel statistical estimator. The performance of our method shows promising results, with more accurate and less fluctuating statistics compared to direct stochastic simulations of comparable particle number. Taken together, our framework allows for effortless and reliable particle-based simulations of Fokker–Planck equations in low and moderate dimensions. The proposed gradient–log–density estimator is also of independent interest, for example, in the context of optimal control.

[1]  Catherine Nicolis,et al.  Stochastic aspects of climatic transitions - Response to a periodic forcing , 2018 .

[2]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[3]  J. Carrillo,et al.  A blob method for diffusion , 2017, Calculus of Variations and Partial Differential Equations.

[4]  Richard E. Turner,et al.  Gradient Estimators for Implicit Models , 2017, ICLR.

[5]  Bernhard Schölkopf,et al.  Deep Energy Estimator Networks , 2018, ArXiv.

[6]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[8]  Yu-Kweng Michael Lin,et al.  Probabilistic Structural Dynamics: Advanced Theory and Applications , 1967 .

[9]  Sebastian Reich,et al.  Discrete gradients for computational Bayesian inference , 2019 .

[10]  Sebastian Reich,et al.  Fokker-Planck particle systems for Bayesian inference: Computational approaches , 2019, SIAM/ASA J. Uncertain. Quantification.

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .

[13]  Tomaso A. Poggio,et al.  Approximate inference with Wasserstein gradient flows , 2018, AISTATS.

[14]  Qiang Liu,et al.  Stein Variational Gradient Descent as Gradient Flow , 2017, NIPS.

[15]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[16]  Arthur Gretton,et al.  Efficient and principled score estimation with Nyström kernel exponential families , 2017, AISTATS.

[17]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[18]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  G. Schuëller,et al.  Equivalent linearization and Monte Carlo simulation in stochastic dynamics , 2003 .

[20]  K. Zygalakis,et al.  Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation. , 2010, The Journal of chemical physics.

[21]  J. E. Rose,et al.  Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. , 1967, Journal of neurophysiology.

[22]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[23]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[24]  Lawrence A. Bergman,et al.  Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study , 2013 .

[25]  Gray W. Harrison Numerical solution of the Fokker Planck equation using moving finite elements , 1988 .

[26]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[27]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[28]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[29]  Debashish Chowdhury,et al.  Stochastic Transport in Complex Systems: From Molecules to Vehicles , 2010 .

[30]  Arno Solin,et al.  Applied Stochastic Differential Equations , 2019 .

[31]  D. Volfson,et al.  Origins of extrinsic variability in eukaryotic gene expression , 2006, Nature.

[32]  Ramon Grima,et al.  Approximation and inference methods for stochastic biochemical kinetics—a tutorial review , 2016, 1608.06582.

[33]  A. Oudenaarden,et al.  Cellular Decision Making and Biological Noise: From Microbes to Mammals , 2011, Cell.

[34]  Van Kampen,et al.  The Expansion of the Master Equation , 2007 .

[35]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[36]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[37]  Kenneth F. Caluya,et al.  Gradient Flow Algorithms for Density Propagation in Stochastic Systems , 2019, IEEE Transactions on Automatic Control.

[38]  N. Goldenfeld,et al.  Extrinsic noise driven phenotype switching in a self-regulating gene. , 2013, Physical review letters.

[39]  R. Mahnke,et al.  How to solve Fokker-Planck equation treating mixed eigenvalue spectrum? , 2013, 1303.5211.

[40]  M. V. Tretyakov,et al.  Computing ergodic limits for Langevin equations , 2007 .

[41]  M. Suzuki,et al.  Passage from an Initial Unstable State to A Final Stable State , 2007 .

[42]  Jun Zhu,et al.  A Spectral Approach to Gradient Estimation for Implicit Distributions , 2018, ICML.

[43]  H. Larralde,et al.  Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  D. Gillespie The chemical Langevin equation , 2000 .

[45]  Roberto Benzi,et al.  Stochastic resonance in climatic change , 2012 .

[46]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[47]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.

[48]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[49]  Rosa María Velasco,et al.  Entropy Production: Its Role in Non-Equilibrium Thermodynamics , 2011, Entropy.

[50]  C. Vidal,et al.  Non-Equilibrium Dynamics in Chemical Systems , 1984 .

[51]  S. Bobkov,et al.  One-dimensional empirical measures, order statistics, and Kantorovich transport distances , 2019, Memoirs of the American Mathematical Society.

[52]  S. Narayanan,et al.  Solution of Fokker-Planck equation by finite element and finite difference methods for nonlinear systems , 2006 .

[53]  Nan Chen,et al.  Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions , 2017, J. Comput. Phys..

[54]  C. Nicolis,et al.  Solar variability and stochastic effects on climate , 1981 .

[55]  C. Villani Optimal Transport: Old and New , 2008 .

[56]  Nikolas Nüsken,et al.  Affine invariant interacting Langevin dynamics for Bayesian inference , 2020, SIAM J. Appl. Dyn. Syst..

[57]  T I Tóth,et al.  All thalamocortical neurones possess a T‐type Ca2+‘window’ current that enables the expression of bistability‐mediated activities , 1999, The Journal of physiology.

[58]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[59]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[60]  N. Pizzolato,et al.  External Noise Effects in Doped Semiconductors Operating Under sub-THz Signals , 2012 .

[61]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[62]  M. Opper,et al.  Variational estimation of the drift for stochastic differential equations from the empirical density , 2016, 1603.01159.

[63]  Amirhossein Taghvaei,et al.  Accelerated Flow for Probability Distributions , 2019, ICML.

[64]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[65]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[66]  T. Tomé,et al.  Stochastic Dynamics and Irreversibility , 2014 .

[67]  Qiang Liu,et al.  A Kernelized Stein Discrepancy for Goodness-of-fit Tests , 2016, ICML.

[68]  P. Spanos,et al.  Random vibration and statistical linearization , 1990 .