Gyroscopic stabilization of non-conservative systems

Gyroscopic stabilization of a linear conservative system, which is statically unstable, can be either improved or destroyed by weak damping and circulatory forces. This is governed by Whitney umbrella singularity of the boundary of the asymptotic stability domain of the perturbed system.

[1]  Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation , 1991 .

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  S. Barnett,et al.  Leverrier's algorithm: a new proof and extensions , 1989 .

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[6]  William Thomson Baron Kelvin,et al.  Treatise on Natural Philosophy , 1867 .

[7]  Oleg N. Kirillov,et al.  Stabilization and destabilization of a circulatory system by small velocity-dependent forces , 2005 .

[8]  Michal Branicki,et al.  Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  L. Gaul,et al.  Effects of damping on mode‐coupling instability in friction induced oscillations , 2003 .

[10]  R. Knops,et al.  The Dynamic Stability of Elastic Systems. By V. V. Bolotin. 1964. (Holden-Day)Non-Conservative Problems of the Theory of Elastic Stability. V. V. Bolotin. 1963. (Pergamon) , 1966, The Mathematical Gazette.

[11]  H. Tasso,et al.  On Lyapunov stability of dissipative mechanical systems , 1999 .

[12]  B. M. Fulk MATH , 1992 .

[13]  Jerrold E. Marsden,et al.  Tippe Top Inversion as a Dissipation-Induced Instability , 2004, SIAM J. Appl. Dyn. Syst..

[14]  G. Haller Gyroscopic stability and its loss in systems with two essential coordinates , 1992 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Jerrold E. Marsden,et al.  On destabilizing effects of two fundamental non-conservative forces , 2006 .

[17]  Oleg N. Kirillov A theory of the destabilization paradox in non-conservative systems , 2005 .

[18]  H. Tasso,et al.  On Lyapunov stability of nonautonomous mechanical systems , 2000 .

[19]  V. V. Bolotin,et al.  Nonconservative problems of the theory of elastic stability , 1963 .

[20]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[21]  ALEXEI A. MAILYBAEV,et al.  On Singularities of a Boundary of the Stability Domain , 1999, SIAM J. Matrix Anal. Appl..

[22]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[23]  David Macleish Smith,et al.  The motion of a rotor carried by a flexible shaft in flexible bearings , 1933 .

[24]  H. Ziegler,et al.  Die Stabilitätskriterien der Elastomechanik , 1952 .