Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System.

Hexagonal boron nitride (hBN) is a natural hyperbolic material, which can also accommodate highly dispersive surface phonon-polariton modes. In this paper, we examine theoretically the mid-infrared optical properties of graphene-hBN heterostructures derived from their coupled plasmon-phonon modes. We find that the graphene plasmon couples differently with the phonons of the two Reststrahlen bands, owing to their different hyperbolicity. This also leads to distinctively different interaction between an external quantum emitter and the plasmon-phonon modes in the two bands, leading to substantial modification of its spectrum. The coupling to graphene plasmons allows for additional gate tunability in the Purcell factor and narrow dips in its emission spectra.

[1]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[2]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[3]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[4]  V. Podolskiy,et al.  Homogeneous Hyperbolic Systems for Terahertz and Far-Infrared Frequencies , 2012 .

[5]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[6]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[7]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[8]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[9]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[10]  Z. Jacob Nanophotonics: Hyperbolic phonon-polaritons. , 2014, Nature materials.

[11]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[12]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[13]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[14]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[15]  Fengnian Xia,et al.  Tunable phonon-induced transparency in bilayer graphene nanoribbons. , 2013, Nano letters (Print).

[16]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[17]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[18]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[19]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[20]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[21]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[22]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[23]  Jie Yao,et al.  Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws , 2012, Nature Photonics.

[24]  D. Kaharudin,et al.  Microwave and Optical Technology Letters , 1988 .

[25]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[26]  L. Novotný,et al.  Focusing of surface phonon polaritons , 2008 .

[27]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[28]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[29]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[30]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[31]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[32]  Zubin Jacob,et al.  Broadband super-planckian thermal emission from hyperbolic metamaterials , 2013, CLEO: 2013.

[33]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[34]  Pavel A. Belov,et al.  Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis , 2003 .

[35]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[36]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[37]  S. Das Sarma,et al.  Plasmon modes of spatially separated double-layer graphene , 2009 .

[38]  D. Mills,et al.  Raman scattering of light by polaritons in thin films; surface polaritons and size effects , 1976 .

[39]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[40]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[41]  E. Narimanov,et al.  Zeroth-order transmission resonance in hyperbolic metamaterials , 2013, CLEO: 2013.

[42]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[43]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[44]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[45]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[46]  T. Taubner,et al.  Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. , 2013, Nano letters.

[47]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[48]  Richard Z. Zhang,et al.  Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes , 2014 .

[49]  K. L. Kliewer,et al.  Optical Modes of Vibration in an Ionic Crystal Slab Including Retardation. I. Nonradiative Region , 1966 .

[50]  Infrared reflectance spectrum of BN calculated from first principles , 2007, 1108.0154.

[51]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[52]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[53]  Xiaoji G. Xu,et al.  One-dimensional surface phonon polaritons in boron nitride nanotubes , 2014, Nature Communications.

[54]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[55]  D. E. Chang,et al.  Strong coupling of single emitters to surface plasmons , 2006, quant-ph/0603221.

[56]  A. Ayala,et al.  Far Infrared Slab Lensing and Subwavelength Imaging in Crystal Quartz , 2012, 1207.3531.

[57]  S. Maier,et al.  Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. , 2013, Nano letters.

[58]  H. Riedmatten,et al.  Electrical control of optical emitter relaxation pathways enabled by graphene , 2014, Nature Physics.

[59]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[60]  F. Guinea,et al.  Novel midinfrared plasmonic properties of bilayer graphene. , 2013, Physical review letters.

[61]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[62]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[63]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[64]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[65]  Marin Soljacic,et al.  Plasmons in Graphene: Fundamental Properties and Potential Applications , 2013, Proceedings of the IEEE.

[66]  Peining Li,et al.  Broadband subwavelength imaging using a tunable graphene-lens. , 2012, ACS nano.

[67]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.