Quantitative Combinatorial Geometry for Continuous Parameters
暂无分享,去创建一个
Jesús A. De Loera | David Rolnick | Pablo Soberón | Reuben N. La Haye | D. Rolnick | J. D. Loera | P. Soberón | R. N. L. Haye
[1] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[2] M. Katchalski,et al. A Problem of Geometry in R n , 1979 .
[3] M. Katchalski,et al. A problem of geometry in ⁿ , 1979 .
[4] V. Klee,et al. Helly's theorem and its relatives , 1963 .
[5] A. Barvinok. Thrifty approximations of convex bodies by polytopes , 2012, 1206.3993.
[6] Jesús A. De Loera,et al. Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets , 2016, Discret. Comput. Geom..
[7] Günter M. Ziegler. 3N Colored Points in a Plane , 2011 .
[8] P. Gruber. Asymptotic estimates for best and stepwise approximation of convex bodies I , 1993 .
[9] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[10] Pavle V. M. Blagojevi'c,et al. Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.
[11] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[12] P. Gruber. Aspects of Approximation of Convex Bodies , 1993 .
[13] David Rolnick,et al. Quantitative (p, q) theorems in combinatorial geometry , 2017, Discret. Math..
[14] Andreas Holmsen,et al. HELLY-TYPE THEOREMS AND GEOMETRIC TRANSVERSALS , 2016 .
[15] D. Rolnick,et al. Quantitative Tverberg, Helly, & Carathéodory theorems , 2015, 1503.06116.
[16] Michael Langberg,et al. Contraction and Expansion of Convex Sets , 2007, CCCG.
[17] J. Pach,et al. Helly"s theorem with volumes , 1984 .
[18] Márton Naszódi. Proof of a Conjecture of Bárány, Katchalski and Pach , 2016, Discret. Comput. Geom..
[19] I Barany,et al. A GENERALIZATION OF CARATHEODORYS THEOREM , 1982 .
[20] Shlomo Reisner,et al. Dropping a vertex or a facet from a convex polytope , 2001 .
[21] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .
[22] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[23] Y. Gordon,et al. Constructing a polytope to approximate a convex body , 1995 .
[24] Jesús A. De Loera,et al. A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..
[25] Károly J. Böröczky,et al. Approximation of General Smooth Convex Bodies , 2000 .
[26] K. S. Sarkaria. Tverberg’s theorem via number fields , 1992 .
[27] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[28] David G. Kirkpatrick,et al. Quantitative Steinitz's theorems with applications to multifingered grasping , 1990, STOC '90.
[29] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[30] Uli Wagner,et al. Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.
[31] Pablo Soberón. Equal coefficients and tolerance in coloured Tverberg partitions , 2015, Comb..
[32] János Pach,et al. Points surrounding the origin , 2008, Comb..
[33] Helge Tverberg. A generalization of Radon's theorem II , 1981, Bulletin of the Australian Mathematical Society.
[34] Ruy Fabila Monroy,et al. Very Colorful Theorems , 2009, Discret. Comput. Geom..
[35] I. Bárány,et al. A Colored Version of Tverberg's Theorem , 1992 .
[36] Jean-Pierre Roudneff,et al. Partitions of Points into Simplices withk-dimensional Intersection. Part I: The Conic Tverberg's Theorem , 2001, Eur. J. Comb..
[37] Imre Bárány,et al. Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..
[38] N. Alon,et al. Piercing convex sets and the hadwiger-debrunner (p , 1992 .
[39] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[40] E. M. Bronshteyn,et al. The approximation of convex sets by polyhedra , 1975 .
[41] Nina Amenta,et al. Helly's Theorem: New Variations and Applications , 2015, 1508.07606.
[42] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[43] Benjamin Matschke,et al. Optimal bounds for a colorful Tverberg--Vrecica type problem , 2009, 0911.2692.
[44] E. Bronstein. Approximation of convex sets by polytopes , 2008 .
[45] E. Helly,et al. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .
[46] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[47] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[48] Shlomo Reisner,et al. Umbrellas and Polytopal Approximation of the Euclidean Ball , 1996 .
[49] P. Gruber. Asymptotic estimates for best and stepwise approximation of convex bodies II , 1993 .
[50] J. Pach,et al. Quantitative Helly-type theorems , 1982 .