Quantitative Combinatorial Geometry for Continuous Parameters

We prove variations of Carathéodory’s, Helly’s and Tverberg’s theorems where the sets involved are measured according to continuous functions such as the volume or diameter. Among our results, we present continuous quantitative versions of Lovász’s colorful Helly’s theorem, Bárány’s colorful Carathéodory’s theorem, and the colorful Tverberg’s theorem.

[1]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[2]  M. Katchalski,et al.  A Problem of Geometry in R n , 1979 .

[3]  M. Katchalski,et al.  A problem of geometry in ⁿ , 1979 .

[4]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[5]  A. Barvinok Thrifty approximations of convex bodies by polytopes , 2012, 1206.3993.

[6]  Jesús A. De Loera,et al.  Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets , 2016, Discret. Comput. Geom..

[7]  Günter M. Ziegler 3N Colored Points in a Plane , 2011 .

[8]  P. Gruber Asymptotic estimates for best and stepwise approximation of convex bodies I , 1993 .

[9]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[10]  Pavle V. M. Blagojevi'c,et al.  Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.

[11]  Florian Frick,et al.  Counterexamples to the topological Tverberg conjecture , 2015 .

[12]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[13]  David Rolnick,et al.  Quantitative (p, q) theorems in combinatorial geometry , 2017, Discret. Math..

[14]  Andreas Holmsen,et al.  HELLY-TYPE THEOREMS AND GEOMETRIC TRANSVERSALS , 2016 .

[15]  D. Rolnick,et al.  Quantitative Tverberg, Helly, & Carathéodory theorems , 2015, 1503.06116.

[16]  Michael Langberg,et al.  Contraction and Expansion of Convex Sets , 2007, CCCG.

[17]  J. Pach,et al.  Helly"s theorem with volumes , 1984 .

[18]  Márton Naszódi Proof of a Conjecture of Bárány, Katchalski and Pach , 2016, Discret. Comput. Geom..

[19]  I Barany,et al.  A GENERALIZATION OF CARATHEODORYS THEOREM , 1982 .

[20]  Shlomo Reisner,et al.  Dropping a vertex or a facet from a convex polytope , 2001 .

[21]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[22]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[23]  Y. Gordon,et al.  Constructing a polytope to approximate a convex body , 1995 .

[24]  Jesús A. De Loera,et al.  A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..

[25]  Károly J. Böröczky,et al.  Approximation of General Smooth Convex Bodies , 2000 .

[26]  K. S. Sarkaria Tverberg’s theorem via number fields , 1992 .

[27]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[28]  David G. Kirkpatrick,et al.  Quantitative Steinitz's theorems with applications to multifingered grasping , 1990, STOC '90.

[29]  E. Steinitz Bedingt konvergente Reihen und konvexe Systeme. , 1913 .

[30]  Uli Wagner,et al.  Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.

[31]  Pablo Soberón Equal coefficients and tolerance in coloured Tverberg partitions , 2015, Comb..

[32]  János Pach,et al.  Points surrounding the origin , 2008, Comb..

[33]  Helge Tverberg A generalization of Radon's theorem II , 1981, Bulletin of the Australian Mathematical Society.

[34]  Ruy Fabila Monroy,et al.  Very Colorful Theorems , 2009, Discret. Comput. Geom..

[35]  I. Bárány,et al.  A Colored Version of Tverberg's Theorem , 1992 .

[36]  Jean-Pierre Roudneff,et al.  Partitions of Points into Simplices withk-dimensional Intersection. Part I: The Conic Tverberg's Theorem , 2001, Eur. J. Comb..

[37]  Imre Bárány,et al.  Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..

[38]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[39]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[40]  E. M. Bronshteyn,et al.  The approximation of convex sets by polyhedra , 1975 .

[41]  Nina Amenta,et al.  Helly's Theorem: New Variations and Applications , 2015, 1508.07606.

[42]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[43]  Benjamin Matschke,et al.  Optimal bounds for a colorful Tverberg--Vrecica type problem , 2009, 0911.2692.

[44]  E. Bronstein Approximation of convex sets by polytopes , 2008 .

[45]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[46]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[47]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[48]  Shlomo Reisner,et al.  Umbrellas and Polytopal Approximation of the Euclidean Ball , 1996 .

[49]  P. Gruber Asymptotic estimates for best and stepwise approximation of convex bodies II , 1993 .

[50]  J. Pach,et al.  Quantitative Helly-type theorems , 1982 .