Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits

Quantum communication technologies show great promise for applications ranging from the secure transmission of secret messages to distributed quantum computing. Due to fiber losses, long-distance quantum communication requires the use of quantum repeaters, for which there exist quantum memory-based schemes and all-photonic schemes. While all-photonic approaches based on graph states generated from linear optics avoid coherence time issues associated with memories, they outperform repeater-less protocols only at the expense of a prohibitively large overhead in resources. Here, we consider using matter qubits to produce the photonic graph states and analyze in detail the trade-off between resources and performance, as characterized by the achievable secret key rate per matter qubit. We show that fast two-qubit entangling gates between matter qubits and high photon collection and detection efficiencies are the main ingredients needed for the all-photonic protocol to outperform both repeater-less and memory-based schemes.

[1]  Mercedes Gimeno-Segovia,et al.  Deterministic Generation of Large-Scale Entangled Photonic Cluster State from Interacting Solid State Emitters. , 2018, Physical review letters.

[2]  Kenneth Goodenough,et al.  Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission , 2018, Physical Review A.

[3]  S. Wehner,et al.  Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission , 2018, Physical Review A.

[4]  T. Rudolph,et al.  Optically generated 2-dimensional photonic cluster state from coupled quantum dots , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[5]  M. Zwerger,et al.  Measurement-based quantum communication , 2015, 1506.00985.

[6]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[7]  E. Waks,et al.  A quantum phase switch between a single solid-state spin and a photon. , 2015, Nature nanotechnology.

[8]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[9]  Bastian Hacker,et al.  Single-Photon Distillation via a Photonic Parity Measurement Using Cavity QED. , 2019, Physical review letters.

[10]  Alex Greilich,et al.  Ultrafast optical control of entanglement between two quantum-dot spins , 2011 .

[11]  W. Dur,et al.  Role of memory errors in quantum repeaters , 2007 .

[12]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[13]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[14]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[15]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[16]  Jiangfeng Du,et al.  Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions , 2015, Nature Communications.

[17]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[18]  Terry Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2006, Physical review letters.

[19]  Sophia E. Economou,et al.  Generation of arbitrary all-photonic graph states from quantum emitters , 2018, New Journal of Physics.

[20]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[22]  Yasushi Hasegawa,et al.  Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters , 2019, Nature Communications.

[23]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[24]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[25]  Pavel Sekatski,et al.  A gated quantum dot strongly coupled to an optical microcavity , 2019, Nature.

[26]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[27]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[28]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  C. Simon,et al.  Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections , 2015, 1509.00088.

[31]  Gilles Brassard,et al.  An Update on Quantum Cryptography , 1985, CRYPTO.

[32]  A. Greilich,et al.  Nuclei-Induced Frequency Focusing of Electron Spin Coherence , 2007, Science.

[33]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[34]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[35]  M. K. Bhaskar,et al.  Experimental demonstration of memory-enhanced quantum communication , 2020, Nature.

[36]  Donovan Buterakos,et al.  Deterministic generation of all-photonic quantum repeaters from solid-state emitters , 2016, 1612.03869.

[37]  Allan S. Bracker,et al.  Optical control of one and two hole spins in interacting quantum dots , 2011 .

[38]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[39]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[40]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[41]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[42]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[43]  Li Li,et al.  Experimental quantum repeater without quantum memory , 2019, Nature Photonics.

[44]  Sophia E. Economou,et al.  Photonic graph state generation from quantum dots and color centers for quantum communications , 2018, Physical Review B.

[45]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[46]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[47]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[48]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[49]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.

[50]  Lov K. Grover Quantum Telecomputation , 1997 .

[51]  M. Lukin,et al.  One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces , 2019, Physical Review X.

[52]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[53]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[54]  Sergei P. Kulik,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical review letters.

[55]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[56]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[57]  S. Parkins,et al.  Photon Routing in Cavity QED: Beyond the Fundamental Limit of Photon Blockade , 2011, 1109.1197.

[58]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[59]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[60]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[61]  D. Dieks Communication by EPR devices , 1982 .

[62]  Peter Zoller,et al.  Universal photonic quantum computation via time-delayed feedback , 2017, Proceedings of the National Academy of Sciences.

[63]  Terry Rudolph,et al.  Proposal for pulsed on-demand sources of photonic cluster state strings. , 2009, Physical review letters.

[64]  Ming Lai Chan,et al.  Optimized protocol to create repeater graph states for all-photonic quantum repeater , 2018, 1811.10214.

[65]  P. Kok,et al.  Practical repeaters for ultralong-distance quantum communication , 2016, 1607.08140.

[66]  S. Yelin,et al.  Optical Control of a Single Nuclear Spin in the Solid State. , 2018, Physical review letters.

[67]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[68]  S. Economou,et al.  Two-qubit quantum gates for defect qubits in diamond and similar systems , 2013, 1303.0021.

[69]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[70]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[71]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[72]  D. Ritchie,et al.  Photon Phase Shift at the Few-Photon Level and Optical Switching by a Quantum Dot in a Microcavity , 2019, Physical Review Applied.

[73]  Peter van Loock,et al.  Ultrafast Long-Distance Quantum Communication with Static Linear Optics. , 2015, Physical review letters.

[74]  Y. Li At a long distance , 2020 .

[75]  S. Höfling,et al.  Efficient Quantum Photonic Phase Shift in a Low Q-Factor Regime , 2019, ACS Photonics.

[76]  Leigh S. Martin,et al.  Single-shot deterministic entanglement between non-interacting systems with linear optics. , 2019, 1912.00067.

[77]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[78]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[79]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[80]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[81]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.