DNA electron transfer processes: Some theoretical notions

Charge motion within DNA stacks, probed by measurements of electric conductivity and by time-resolved and steady-state damage yield measurements, is determined by a complex mixture of electronic effects, coupling to quantum and classical degrees of freedom of the atomic motions in the bath, and the effects of static and dynamic disorder. The resulting phenomena are complex, and probably cannot be understood using a single integrated modeling viewpoint. We discuss aspects of the electronic structure and overlap among base pairs, the viability of simple electronic structure models including tight-binding band pictures, and the Condon approximation for electronic mixing. We also discuss the general effects of disorder and environmental coupling, resulting in motion that can span from the coherent regime through superexchange-type hopping to diffusion and gated transport. Comparison with experiment can be used to develop an effective phenomenological multiple-site hopping/superexchange model, but the microscopic understanding of the actual behaviors is not yet complete.

[1]  N. Rösch,et al.  Energetics of excess electron transfer in DNA , 2001 .

[2]  M. Ratner,et al.  Elementary steps for charge transport in DNA: thermal activation vs. tunneling , 2002 .

[3]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[4]  T. Meade,et al.  Electron Transfer through DNA: Site‐Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors , 1995 .

[5]  Rolf Landauer,et al.  Traversal time for tunneling , 1986, IBM J. Res. Dev..

[6]  D. Beveridge,et al.  A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. , 1997, Biophysical journal.

[7]  H. Fink,et al.  DNA and conducting electrons , 2001, Cellular and Molecular Life Sciences CMLS.

[8]  A. Saxena,et al.  Green’s function approach for a dynamical study of transport in metal/organic/metal structures , 1999 .

[9]  N. Rösch,et al.  Energetics of hole transfer in DNA , 2000 .

[10]  N. Rösch,et al.  Electronic Coupling for Charge Transfer and Transport in DNA , 2000 .

[11]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[12]  N. Rösch,et al.  Electronic coupling between Watson–Crick pairs for hole transfer and transport in desoxyribonucleic acid , 2001 .

[13]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[14]  Bernd Giese,et al.  Electron transfer in DNA. , 2002, Current opinion in chemical biology.

[15]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[16]  R. S. Coleman,et al.  Measurement of Local DNA Reorganization on the Picosecond and Nanosecond Time Scales , 1999 .

[17]  M. Wasielewski,et al.  Dynamics of inter- and intrastrand hole transport in DNA hairpins. , 2002, Journal of the American Chemical Society.

[18]  P. O'Neill,et al.  A Sting in the Tail of Electron Tracks , 2000, Science.

[19]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[20]  L. Siebbeles,et al.  Sequence‐dependent charge transfer in donor–DNA–acceptor systems: A theoretical study , 1999 .

[21]  Mark A. Ratner,et al.  On the Long-Range Charge Transfer in DNA , 2000 .

[22]  A M Baró,et al.  Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  John M. Warman,et al.  DNA: a molecular wire? , 1996 .

[24]  M. Ratner,et al.  On the electronic structure of substituted phthalocyanines: a Hartree−Fock−Slater study of octacyano- and octafluoro-substituted (phthalocyaninato)silicon dihydroxide , 1987 .

[25]  Notker Rösch,et al.  Estimate of the Reorganization Energy for Charge Transfer in DNA , 2003 .

[26]  T. Meade,et al.  Electron transfer in DNA: Predictions of exponential growth and decay of coupling with donor-acceptor distance , 1993 .

[27]  Sven Larsson,et al.  Electron Hole Transport in DNA , 2001 .

[28]  J. Jortner,et al.  Long-range and very long-range charge transport in DNA , 2002 .

[29]  D. Beratan,et al.  DNA: Insulator or wire? , 1997, Chemistry & biology.

[30]  Jacqueline K. Barton,et al.  Oxidative DNA damage through long-range electron transfer , 1996, Nature.

[31]  Zhi-Gang Yu,et al.  Variable range hopping and electrical conductivity along the DNA double helix. , 2001, Physical review letters.

[32]  M. Ratner,et al.  Conformationally Gated Rate Processes in Biological Macromolecules , 2001 .

[33]  D. Beratan,et al.  Hole size and energetics in double helical DNA: Competition between quantum delocalization and solvation localization , 2002 .

[34]  G. Hampikian,et al.  Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Michel-beyerle,et al.  Charge transfer and transport in DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Mirkin,et al.  A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. , 2000, Analytical chemistry.

[37]  D. Beratan,et al.  Tunneling energy effects on GC oxidation in DNA , 2002 .

[38]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[39]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[40]  A. Harriman,et al.  ENERGY- AND ELECTRON-TRANSFER PROCESSES INVOLVING PALLADIUM PORPHYRINS BOUND TO DNA , 1994 .

[41]  M. Ratner,et al.  Testing the Condon Approximation for Electron Transfer via the Mulliken−Hush Model , 2000 .

[42]  M R Arkin,et al.  Long-range photoinduced electron transfer through a DNA helix. , 1993, Science.

[43]  Masaaki Shimizu,et al.  Single molecule DNA device measured with triple-probe atomic force microscope , 2001 .

[44]  J. Freed,et al.  An Electron Spin Resonance Study of DNA Dynamics Using the Slowly Relaxing Local Structure Model , 2000 .

[45]  Tomoji Kawai,et al.  Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. , 2001, Physical review letters.

[46]  G. Schuster,et al.  Long-range charge transfer in DNA: transient structural distortions control the distance dependence. , 2000, Accounts of chemical research.

[47]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[48]  Yoshio Okahata,et al.  DNA-aligned cast film and its anisotropic electron conductivity , 1998 .

[49]  M. Ratner,et al.  Tunneling Time for Electron Transfer Reactions , 2000 .

[50]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .

[51]  Tomoji Kawai,et al.  Probing electrical properties of oriented DNA by conducting atomic force microscopy , 2001 .

[52]  Robert L. Letsinger,et al.  The DNA-Mediated Formation of Supramolecular Mono- and Multilayered Nanoparticle Structures , 2000 .

[53]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[54]  David N. Beratan,et al.  Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Michael Tinkham,et al.  Scanned Conductance Microscopy of Carbon Nanotubes and λ-DNA , 2002 .

[56]  N. Rösch,et al.  Superexchange Mediated Charge Hopping in DNA , 2002 .

[57]  U. Landman,et al.  Charge Migration in DNA: Ion-Gated Transport , 2001, Science.

[58]  Alan J. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[59]  V. V. Bryksin,et al.  Hopping Conduction in Solids , 1985 .

[60]  A. Troisi,et al.  Construction of electronic diabatic states within a molecular orbital scheme , 2003 .

[61]  M. Newton,et al.  Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions , 1991 .

[62]  H. Sugiyama,et al.  Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5‘-Localization of HOMO of Stacked GG Bases in B-Form DNA , 1996 .

[63]  Ferdinand C. Grozema,et al.  Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping? , 2000 .

[64]  A R Bishop,et al.  Effects of intrinsic base-pair fluctuations on charge transport in DNA. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  A. Ponce,et al.  Electron Tunneling through Water: Oxidative Quenching of Electronically Excited Ru(tpy)22+ (tpy = 2,2‘:6,2‘ ‘-terpyridine) by Ferric Ions in Aqueous Glasses at 77 K , 2000 .

[66]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[67]  Tomoji Kawai,et al.  Control of electrical conduction in DNA using oxygen hole doping , 2002 .

[68]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[69]  D. Beratan,et al.  DNA Is Not a Molecular Wire: Protein-like Electron-Transfer Predicted for an Extended π-Electron System , 1996 .

[70]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[71]  Michael R. Wasielewski,et al.  Direct measurement of hole transport dynamics in DNA , 2000, Nature.

[72]  A. Troisi,et al.  The hole transfer in DNA: calculation of electron coupling between close bases , 2001 .

[73]  M. Ratner,et al.  Charge hopping in DNA. , 2001, Journal of the American Chemical Society.

[74]  Tomoji Kawai,et al.  Self-assembled DNA networks and their electrical conductivity , 2000 .

[75]  M. Ratner,et al.  Semiclassical Theory for Tunneling of Electrons Interacting with Media , 2001 .

[76]  Robert A. Meyers,et al.  Encyclopedia of physical science and technology , 1987 .

[77]  A. Nitzan A Relationship between Electron-Transfer Rates and Molecular Conduction † , 2001, cond-mat/0103399.

[78]  D. Beratan,et al.  DNA-mediated electron transfer , 1998, JBIC Journal of Biological Inorganic Chemistry.

[79]  Bernd Giese,et al.  Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling , 2001, Nature.

[80]  G Gruner,et al.  Charge transport along the lambda-DNA double helix. , 2000, Physical review letters.

[81]  P. Alivisatos Colloidal quantum dots. From scaling laws to biological applications , 2000 .

[82]  Bernd Giese,et al.  On the Mechanism of Long-Range Electron Transfer through DNA. , 1999, Angewandte Chemie.

[83]  M. Wander,et al.  A Theoretical Study of the Electronic Coupling Element for Electron Transfer in Water , 1999 .

[84]  YiJing Yan,et al.  Electrical transport through individual DNA molecules , 2001, cond-mat/0107015.

[85]  Michael D. Fayer,et al.  Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free Energy , 2000 .

[86]  B. Giese,et al.  Long-range charge hopping in DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[88]  E. M. Conwell,et al.  Polaron Motion in DNA , 2001 .

[89]  Bernd Giese,et al.  Sequence Dependent Long Range Hole Transport in DNA , 1998 .

[90]  Mark A Ratner,et al.  Hole mobility in DNA: effects of static and dynamic structural fluctuations. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[91]  M R Arkin,et al.  Rates of DNA-Mediated Electron Transfer Between Metallointercalators , 1996, Science.

[92]  N. Rösch,et al.  Quantum Chemical Modeling of Electron Hole Transfer through π Stacks of Normal and Modified Pairs of Nucleobases , 2002 .