Nonclassical photon statistics and bipartite entanglement generation of excited coherent states

We have studied the effect of a beam splitter on the excited coherent states, which are an intermediate state between the fock state and the coherent state. These states are obtained due to successive elementary one-photon excitations of a coherent state. We have used linear entropy to measure the entanglement generated through a beam splitter when a single-mode excited coherent state is injected at each input port of the beam splitter. We have used our very generalized results to study the possible generation of entanglement for few more specific cases also. Furthermore, we have also studied the nonclassical photon statistics of the output field through the Mandel’s Q parameter and have found the correlation between the photon statistics and the entanglement of the output state.

[1]  M. Bellini,et al.  Manipulating thermal light states by the controlled addition and subtraction of single photons , 2008 .

[2]  L. Mandel,et al.  Photon-antibunching and sub-Poissonian photon statistics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[4]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[5]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[6]  Hong,et al.  Higher-order squeezing of a quantum field. , 1985, Physical review letters.

[7]  Rubens Viana Ramos,et al.  Quantum communication with photon-added coherent states , 2013, Quantum Inf. Process..

[8]  Hall,et al.  Generation of squeezed states by parametric down conversion. , 1986, Physical review letters.

[9]  K. Berrada,et al.  Beam splitter entangler for nonlinear bosonic fields , 2012 .

[10]  M. Teich,et al.  Observation of sub-Poisson Franck-Hertz light at 253. 7 nm , 1984 .

[11]  M. Bellini,et al.  Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission , 2005, quant-ph/0508094.

[12]  Sanders,et al.  Entangled coherent states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  Zheng-Fu Han,et al.  Decoy-state reference-frame-independent quantum key distribution with the single-photon-added coherent source , 2014, Quantum Information Processing.

[15]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  R. Glauber,et al.  Correlation Functions for Coherent Fields , 1965 .

[18]  Y. Hassouni,et al.  Entanglement generation from deformed spin coherent states using a beam splitter , 2009 .

[19]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[20]  Matteo G. A. Paris Entanglement and visibility at the output of a Mach-Zehnder interferometer , 1999 .

[21]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[22]  Mario Dagenais,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[23]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[24]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[25]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[26]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[27]  Fuli Li,et al.  Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states , 2009 .

[28]  Realistic continuous-variable quantum teleportation with non-Gaussian resources , 2009, 0910.2713.

[29]  G. Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state , 1991 .

[30]  Konrad Banaszek,et al.  Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation , 1998 .

[31]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[32]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[33]  DaeKil Park,et al.  Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions , 2019, Quantum Information Processing.

[34]  Wang Xiang-bin Theorem for the beam-splitter entangler , 2002 .

[35]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[36]  V. Dodonov REVIEW ARTICLE: `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years , 2002 .

[37]  G. Tóth,et al.  Entanglement detection based on interference and particle counting (6 pages) , 2003, quant-ph/0306086.

[38]  Jian-Song Zhang,et al.  Entanglement and nonlocality of photon-added entangled coherent states and quantum probabilistic teleportation , 2009 .

[39]  Collett,et al.  Nonlocality of a single photon. , 1991, Physical review letters.

[40]  B. Jurčo On coherent states for the simplest quantum groups , 1991 .

[41]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[42]  Classicality of spin-coherent states via entanglement and distinguishability , 2002, quant-ph/0208179.

[43]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[44]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[45]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[46]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[47]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[48]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[49]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  Marko Milivojevic,et al.  Maximal thermal entanglement using three-spin interactions , 2019, Quantum Inf. Process..

[52]  C. Gerry,et al.  Beam splitting and entanglement: Generalized coherent states, group contraction, and the classical limit , 2005 .

[53]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .