Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals.
暂无分享,去创建一个
Delia J. Milliron | Matthew A. Marcus | D. Milliron | M. Marcus | Clayton J. Dahlman | Yizheng Tan | Yizheng Tan
[1] A. Goossens,et al. Electrical and optical properties of TiO2 in accumulation and of lithium titanate Li0.5TiO2 , 2001 .
[2] M. Wagemaker,et al. Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2 , 2004 .
[3] Ji‐Yong Shin,et al. Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .
[4] Dominik Samuelis,et al. Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .
[5] A. Zunger,et al. Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. , 2008, Physical review letters.
[6] J. Robertson,et al. Doping and compensation in Nb-doped anatase and rutile TiO2 , 2013 .
[7] Roberto Simonutti,et al. Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .
[8] Galo J. A. A. Soler-Illia,et al. Mesoporous Anatase TiO2 Films: Use of Ti K XANES for the Quantification of the Nanocrystalline Character and Substrate Effects in the Photocatalysis Behavior , 2007 .
[9] L. Kavan,et al. Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .
[10] Taejong Paik,et al. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. , 2014, Journal of the American Chemical Society.
[11] M. Wagemaker,et al. Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.
[12] Anton Van der Ven,et al. Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .
[13] Shuxin Ouyang,et al. Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.
[14] Evan L. Runnerstrom,et al. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. , 2015, Journal of the American Chemical Society.
[15] S. Ogale,et al. Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase , 2007 .
[16] C. Granqvist. Oxide electrochromics: An introduction to devices and materials , 2012 .
[17] H. Kumigashira,et al. Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2 , 2008 .
[18] G. Ouvrard,et al. Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra , 1997 .
[19] Taro Hitosugi,et al. A transparent metal: Nb-doped anatase TiO2 , 2005 .
[20] Delia J. Milliron,et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.
[21] L. Kavan,et al. Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .
[22] Evan L. Runnerstrom,et al. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.
[23] H. Kumigashira,et al. Carrier Compensation by Excess Oxygen Atoms in Anatase Ti0.94Nb0.06O2+δ Epitaxial Thin Films , 2010 .
[24] John Wang,et al. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .
[25] T. Frauenheim,et al. Polaronic effects in TiO 2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping , 2011 .
[26] Y. Horiuchi,et al. Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.
[27] G. Watson,et al. Role of Lithium Ordering in the LixTiO2 Anatase → Titanate Phase Transition , 2011 .
[28] A. Fujishima,et al. TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .
[29] M. Wagemaker,et al. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.
[30] Delia J. Milliron,et al. Near‐Infrared Spectrally Selective Plasmonic Electrochromic Thin Films , 2013 .
[31] I. Parkin,et al. Solution Processing Route to Multifunctional Titania Thin Films: Highly Conductive and Photcatalytically Active Nb:TiO2 , 2014 .
[32] J. Tarascon,et al. Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .
[33] Evan L. Runnerstrom,et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.
[34] J. Rehr,et al. TI K-EDGE XANES STUDIES OF TI COORDINATION AND DISORDER IN OXIDE COMPOUNDS: COMPARISON BETWEEN THEORY AND EXPERIMENT , 1997 .
[35] G. Watson,et al. GGA+U description of lithium intercalation into anatase TiO2 , 2010 .
[36] Donald Fitzmaurice,et al. ELECTRON ACCUMULATION IN NANOSTRUCTURED TIO2 (ANATASE) ELECTRODES , 1999 .
[37] Anne C. Dillon,et al. Metal-oxide films for electrochromic applications: present technology and future directions , 2010 .
[38] W. Schmidt,et al. The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[39] A. Selloni,et al. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. , 2014, Chemical reviews.
[40] Ugo Lafont,et al. In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2 , 2010 .
[41] J. Bisquert,et al. Titanium dioxide nanomaterials for photovoltaic applications. , 2014, Chemical reviews.
[42] M. Paganini,et al. Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.
[43] G. Kearley,et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.
[44] Xiaobo Chen,et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.
[45] C. M. Li,et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.
[46] T. Hitosugi,et al. Ta-doped Anatase TiO2 Epitaxial Film as Transparent Conducting Oxide , 2005 .
[47] J. Cabana,et al. Carbon‐Free TiO2 Battery Electrodes Enabled by Morphological Control at the Nanoscale , 2013 .
[48] T. Ohzuku,et al. Nonaqueous lithium/titanium dioxide cell , 1979 .
[49] D. Murphy,et al. The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .
[50] J. M. Kikkawa,et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.
[51] M. Andersson,et al. Electronic structure of lithium-doped anatase TiO2 prepared in ultrahigh vacuum , 2005 .
[52] Yujing Liu,et al. Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. , 2010, ACS nano.