Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals.

Solution-processed films of colloidal aliovalent niobium-doped anatase TiO2 nanocrystals exhibit modulation of optical transmittance in two spectral regions-near-infrared (NIR) and visible light-as they undergo progressive and reversible charging in an electrochemical cell. The Nb-TiO2 nanocrystal film supports a localized surface plasmon resonance in the NIR, which can be dynamically modulated via capacitive charging. When the nanocrystals are charged by insertion of lithium ions, inducing a well-known structural phase transition of the anatase lattice, strong modulation of visible transmittance is observed. Based on X-ray absorption near-edge spectroscopy, the conduction electrons localize only upon lithium ion insertion, thus rationalizing the two modes of optical switching observed in a single material. These multimodal electrochromic properties show promise for application in dynamic optical filters or smart windows.

[1]  A. Goossens,et al.  Electrical and optical properties of TiO2 in accumulation and of lithium titanate Li0.5TiO2 , 2001 .

[2]  M. Wagemaker,et al.  Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2 , 2004 .

[3]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[4]  Dominik Samuelis,et al.  Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .

[5]  A. Zunger,et al.  Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. , 2008, Physical review letters.

[6]  J. Robertson,et al.  Doping and compensation in Nb-doped anatase and rutile TiO2 , 2013 .

[7]  Roberto Simonutti,et al.  Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .

[8]  Galo J. A. A. Soler-Illia,et al.  Mesoporous Anatase TiO2 Films: Use of Ti K XANES for the Quantification of the Nanocrystalline Character and Substrate Effects in the Photocatalysis Behavior , 2007 .

[9]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[10]  Taejong Paik,et al.  Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. , 2014, Journal of the American Chemical Society.

[11]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[12]  Anton Van der Ven,et al.  Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .

[13]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[14]  Evan L. Runnerstrom,et al.  Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. , 2015, Journal of the American Chemical Society.

[15]  S. Ogale,et al.  Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase , 2007 .

[16]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[17]  H. Kumigashira,et al.  Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2 , 2008 .

[18]  G. Ouvrard,et al.  Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra , 1997 .

[19]  Taro Hitosugi,et al.  A transparent metal: Nb-doped anatase TiO2 , 2005 .

[20]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[21]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[22]  Evan L. Runnerstrom,et al.  Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.

[23]  H. Kumigashira,et al.  Carrier Compensation by Excess Oxygen Atoms in Anatase Ti0.94Nb0.06O2+δ Epitaxial Thin Films , 2010 .

[24]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[25]  T. Frauenheim,et al.  Polaronic effects in TiO 2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping , 2011 .

[26]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[27]  G. Watson,et al.  Role of Lithium Ordering in the LixTiO2 Anatase → Titanate Phase Transition , 2011 .

[28]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[29]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[30]  Delia J. Milliron,et al.  Near‐Infrared Spectrally Selective Plasmonic Electrochromic Thin Films , 2013 .

[31]  I. Parkin,et al.  Solution Processing Route to Multifunctional Titania Thin Films: Highly Conductive and Photcatalytically Active Nb:TiO2 , 2014 .

[32]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[33]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[34]  J. Rehr,et al.  TI K-EDGE XANES STUDIES OF TI COORDINATION AND DISORDER IN OXIDE COMPOUNDS: COMPARISON BETWEEN THEORY AND EXPERIMENT , 1997 .

[35]  G. Watson,et al.  GGA+U description of lithium intercalation into anatase TiO2 , 2010 .

[36]  Donald Fitzmaurice,et al.  ELECTRON ACCUMULATION IN NANOSTRUCTURED TIO2 (ANATASE) ELECTRODES , 1999 .

[37]  Anne C. Dillon,et al.  Metal-oxide films for electrochromic applications: present technology and future directions , 2010 .

[38]  W. Schmidt,et al.  The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  A. Selloni,et al.  Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. , 2014, Chemical reviews.

[40]  Ugo Lafont,et al.  In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2 , 2010 .

[41]  J. Bisquert,et al.  Titanium dioxide nanomaterials for photovoltaic applications. , 2014, Chemical reviews.

[42]  M. Paganini,et al.  Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[43]  G. Kearley,et al.  Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.

[44]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[45]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[46]  T. Hitosugi,et al.  Ta-doped Anatase TiO2 Epitaxial Film as Transparent Conducting Oxide , 2005 .

[47]  J. Cabana,et al.  Carbon‐Free TiO2 Battery Electrodes Enabled by Morphological Control at the Nanoscale , 2013 .

[48]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .

[49]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[50]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[51]  M. Andersson,et al.  Electronic structure of lithium-doped anatase TiO2 prepared in ultrahigh vacuum , 2005 .

[52]  Yujing Liu,et al.  Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. , 2010, ACS nano.