BMO solutions to quasilinear equations of $p$-Laplace type

— We give necessary and sufficient conditions for the existence of a BMO solution to the quasilinear equation −∆pu = μ in Rn, u > 0, where μ is a locally finite Radon measure, and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian (p > 1). We also characterize BMO solutions to equations −∆pu = σuq +μ in Rn, u > 0, with q > 0, where both μ and σ are locally finite Radon measures. Our main results hold for a class of more general quasilinear operators div(A(x,∇·)) in place of ∆p. Résumé. — Nous donnons les conditions nécessaires et suffisantes pour l’existence d’une solution BMO de l’équation quasi-linéaire −∆pu = μ dans Rn, u > 0, où μ est une mesure de Radon localement finie, et ∆pu = div(|∇u|p−2∇u) est le p-Laplacien (p > 1). Nous caractérisons également les solutions BMO de l’équation −∆pu = σuq +μ in Rn, u > 0, avec q > 0, où μ et σ sont des mesures de Radon localement finies. Nos principaux résultats sont valables pour une classe d’opérateurs quasi-linéaires plus généraux div(A(x,∇·)) à la place de ∆p.

[1]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[2]  I. Verbitsky,et al.  Nonlinear elliptic equations and intrinsic potentials of Wolff type , 2014, 1409.4076.

[3]  Quoc-Hung Nguyen,et al.  Good-$$\lambda $$λ and Muckenhoupt–Wheeden type bounds in quasilinear measure datum problems, with applications , 2018, Mathematische Annalen.

[4]  N. Phuc Morrey global bounds and quasilinear Riccati type equations below the natural exponent , 2014 .

[5]  Igor E. Verbitsky Bilateral estimates of solutions to quasilinear elliptic equations with sub-natural growth terms , 2021, Advances in Calculus of Variations.

[6]  D. Adams A note on Riesz potentials , 1975 .

[7]  G. D. Maso,et al.  Definition and existence of renormalized solutions of elliptic equations with general measure data , 1997 .

[8]  Neil S. Trudinger,et al.  On the weak continuity of elliptic operators and applications to potential theory , 2002 .

[9]  Quasilinear and Hessian equations of Lane-Emden type , 2005, math/0501483.

[10]  T. Kilpeläinen,et al.  Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .

[11]  T. Kilpeläinen,et al.  Removable sets for continuous solutions of quasilinear elliptic equations , 2001 .

[12]  I. Verbitsky Quasilinear elliptic equations with sub-natural growth terms and nonlinear potential theory , 2019, Rendiconti Lincei - Matematica e Applicazioni.

[13]  G. Mingione Gradient estimates below the duality exponent , 2010 .

[14]  A. G. O'Farrell,et al.  FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .

[15]  The Calderón-Zygmund theory for elliptic problems with measure data , 2006, math/0609670.

[16]  N. Phuc,et al.  Singular quasilinear and Hessian equations and inequalities , 2009 .

[17]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[18]  V. G. Mazʹi︠a︡,et al.  Sobolev spaces : with applications to elliptic partial differential equations , 2011 .

[19]  I. Verbitsky,et al.  Local and Global Behaviour of Solutions to Nonlinear Equations with Natural Growth Terms , 2011, 1107.2448.

[20]  N. Phuc,et al.  Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations , 2014, 1412.4833.

[21]  N. Phuc,et al.  Gradient Weighted Norm Inequalities for Linear Elliptic Equations with Discontinuous Coefficients , 2018, Applied Mathematics & Optimization.

[22]  T. Kilpeläinen,et al.  Superharmonic functions are locally renormalized solutions , 2011 .

[23]  Giuseppe Mingione,et al.  Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.

[24]  L. Hedberg,et al.  Thin sets in nonlinear potential theory , 1983 .

[25]  Neil S. Trudinger,et al.  On harnack type inequalities and their application to quasilinear elliptic equations , 1967 .

[26]  T. Kilpeläinen,et al.  The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .