Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding

The Multiobjective Artificial Bee Colony with Differential Evolution (MO-ABC/DE) is a new hybrid multiobjective evolutionary algorithm proposed for solving optimization problems. One important optimization problem in Bioinformatics is the Motif Discovery Problem (MDP), applied to the specific task of discovering DNA patterns (motifs) with biological significance, such as DNA-protein binding sites, replication origins or transcriptional DNA sequences. In this work, we apply the MO-ABC/DE algorithm for solving the MDP using as benchmark genomic data belonging to four organisms: drosophila melanogaster, homo sapiens, mus musculus, and saccharomyces cerevisiae. To demonstrate the good performance of our algorithm we have compared its results with those obtained by four multiobjective evolutionary algorithms, and their predictions with those made by thirteen well-known biological tools. As we will see, the proposed algorithm achieves good results from both computer science and biology point of views.

[1]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[2]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[3]  Ajith Abraham,et al.  Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews , 2007 .

[4]  A. Rubio-Largo,et al.  MO-ABC/DE - Multiobjective Artificial Bee Colony with Differential Evolution for unconstrained multiobjective optimization , 2012, 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI).

[5]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[6]  Khaled Rasheed,et al.  MDGA: motif discovery using a genetic algorithm , 2005, GECCO '05.

[7]  Miguel A. Vega-Rodríguez,et al.  Predicting DNA Motifs by Using Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[8]  T. Mockler,et al.  Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology , 2008, Nucleic acids research.

[9]  Rong-Ming Chen,et al.  FMGA: finding motifs by genetic algorithm , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.

[10]  Andrew M. Tyrrell,et al.  Regulatory Motif Discovery Using a Population Clustering Evolutionary Algorithm , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Miguel A. Vega-Rodríguez,et al.  Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery , 2013, Eng. Appl. Artif. Intell..

[13]  Dipankar Dasgupta,et al.  Motif discovery in upstream sequences of coordinately expressed genes , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[14]  G. Fogel,et al.  Discovery of sequence motifs related to coexpression of genes using evolutionary computation. , 2004, Nucleic acids research.

[15]  Carolyn J. Mattingly,et al.  Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[16]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[17]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[18]  Gary B. Fogel,et al.  Evolutionary computation for discovery of composite transcription factor binding sites , 2008, Nucleic acids research.

[19]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[20]  Yuehui Chen,et al.  Bacterial Foraging Optimization Algorithm Integrating Tabu Search for Motif Discovery , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine.

[21]  Mehmet Kaya,et al.  MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..

[22]  Hitoshi Iba,et al.  Identification of weak motifs in multiple biological sequences using genetic algorithm , 2006, GECCO.

[23]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[25]  P. D’haeseleer What are DNA sequence motifs? , 2006, Nature Biotechnology.