Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding
暂无分享,去创建一个
Miguel A. Vega-Rodríguez | David L. González-Álvarez | M. A. Vega-Rodríguez | D. L. González-Álvarez
[1] Dervis Karaboga,et al. AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .
[2] William Stafford Noble,et al. Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.
[3] Ajith Abraham,et al. Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews , 2007 .
[4] A. Rubio-Largo,et al. MO-ABC/DE - Multiobjective Artificial Bee Colony with Differential Evolution for unconstrained multiobjective optimization , 2012, 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI).
[5] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[6] Khaled Rasheed,et al. MDGA: motif discovery using a genetic algorithm , 2005, GECCO '05.
[7] Miguel A. Vega-Rodríguez,et al. Predicting DNA Motifs by Using Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[8] T. Mockler,et al. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology , 2008, Nucleic acids research.
[9] Rong-Ming Chen,et al. FMGA: finding motifs by genetic algorithm , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.
[10] Andrew M. Tyrrell,et al. Regulatory Motif Discovery Using a Population Clustering Evolutionary Algorithm , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[11] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[12] Miguel A. Vega-Rodríguez,et al. Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery , 2013, Eng. Appl. Artif. Intell..
[13] Dipankar Dasgupta,et al. Motif discovery in upstream sequences of coordinately expressed genes , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[14] G. Fogel,et al. Discovery of sequence motifs related to coexpression of genes using evolutionary computation. , 2004, Nucleic acids research.
[15] Carolyn J. Mattingly,et al. Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.
[16] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[17] Hisao Ishibuchi,et al. Hybrid Evolutionary Algorithms , 2007 .
[18] Gary B. Fogel,et al. Evolutionary computation for discovery of composite transcription factor binding sites , 2008, Nucleic acids research.
[19] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[20] Yuehui Chen,et al. Bacterial Foraging Optimization Algorithm Integrating Tabu Search for Motif Discovery , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine.
[21] Mehmet Kaya,et al. MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..
[22] Hitoshi Iba,et al. Identification of weak motifs in multiple biological sequences using genetic algorithm , 2006, GECCO.
[23] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[24] Kalyanmoy Deb,et al. Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.
[25] P. D’haeseleer. What are DNA sequence motifs? , 2006, Nature Biotechnology.