Extended Dynamic Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control

This paper presents a novel learning framework to construct Koopman eigenfunctions for unknown, nonlinear dynamics using data gathered from experiments. The learning framework can extract spectral information from the full non-linear dynamics by learning the eigenvalues and eigenfunctions of the associated Koopman operator. We then exploit the learned Koopman eigenfunctions to learn a lifted linear state-space model. To the best of our knowledge, our method is the first to utilize Koopman eigenfunctions as lifting functions for EDMD-based methods. We demonstrate the performance of the framework in state prediction and closed loop trajectory tracking of a simulated cart pole system. Our method is able to significantly improve the controller performance while relying on linear control methods to do nonlinear control.

[1]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[2]  Steven L. Brunton,et al.  Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..

[3]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[4]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[5]  Aaron D. Ames,et al.  Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems* , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[7]  Joel W. Burdick,et al.  Episodic Koopman Learning of Nonlinear Robot Dynamics with Application to Fast Multirotor Landing , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Igor Mezic,et al.  Learning Koopman eigenfunctions for prediction and control: the transient case , 2018 .

[9]  P. Olver Nonlinear Systems , 2013 .

[10]  Ryan Mohr,et al.  Construction of eigenfunctions for scalar-type operators via Laplace averages with connections to the Koopman operator , 2014, 1403.6559.

[11]  Sergei Lupashin,et al.  A platform for aerial robotics research and demonstration: The Flying Machine Arena , 2014 .

[12]  Soon-Jo Chung,et al.  Neural Lander: Stable Drone Landing Control Using Learned Dynamics , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[13]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[14]  Stephen P. Boyd,et al.  OSQP: an operator splitting solver for quadratic programs , 2017, 2018 UKACC 12th International Conference on Control (CONTROL).

[15]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[16]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[17]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[18]  Heni Ben Amor,et al.  Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.

[19]  Gábor Orosz,et al.  End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks , 2019, AAAI.

[20]  E Kaiser,et al.  Sparse identification of nonlinear dynamics for model predictive control in the low-data limit , 2017, Proceedings of the Royal Society A.

[21]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[22]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[23]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[24]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[25]  Javier García,et al.  A comprehensive survey on safe reinforcement learning , 2015, J. Mach. Learn. Res..

[26]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[27]  Pieter Abbeel,et al.  Benchmarking Deep Reinforcement Learning for Continuous Control , 2016, ICML.

[28]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.