Snow/atmosphere coupled simulation at Dome C, Antarctica

Abstract Using a snow/atmosphere coupled model, the evolution of the surface and near-surface snow temperature is modeled at Dome C, Antarctica, during the period 20–30 January 2010. Firstly, the detailed multilayer snow model Crocus is run in stand-alone mode, with meteorological input forcing data provided by local meteorological observations. The snow model is able to simulate the evolution of surface temperature with good accuracy. It reproduces the observed downward propagation of the diurnal heatwave into the upper 50 cm of the snowpack reasonably well. Secondly, a fully coupled 3-D snow/atmosphere simulation is performed with the AROME regional meteorological model, for which the standard single-layer snow parameterization is replaced by Crocus. In spite of a poor simulation of clouds, the surface and near-surface snow temperatures are correctly simulated, showing neither significant bias nor drifts during the simulation period. The model reproduces particularly well the average decrease of the diurnal amplitude of air temperature from the surface to the top of the 45 m instrumented tower. This study highlights the potential of snow/atmosphere coupled models over the Antarctic plateau and the need to improve cloud microphysics and data assimilation over polar regions.

[1]  Vincent Guidard,et al.  Enhancements of Satellite Data Assimilation over Antarctica , 2010 .

[2]  Sylvie Malardel,et al.  A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction , 2009 .

[3]  M. E. Rindol Validation of an application for forecasting blowing snow , 2010 .

[4]  Ghislain Picard,et al.  Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours , 2006 .

[5]  Jeff Dozier,et al.  Effect of Viewing Angle on the Infrared Brightness Temperature of Snow , 1982 .

[6]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[7]  Andrew Gettelman,et al.  Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model , 2006 .

[8]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[9]  E. Martin,et al.  Coupling a multi-layered snow model with a GCM , 1997, Annals of Glaciology.

[10]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[11]  Semion Sukoriansky,et al.  A quasi-normal scale elimination model of turbulence and its application to stably stratified flows , 2006 .

[12]  E. Anderson,et al.  A point energy and mass balance model of a snow cover , 1975 .

[13]  E. Martin,et al.  An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting , 1989, Journal of Glaciology.

[14]  M. Broeke,et al.  The Surface Energy Balance of Antarctic Snow and Blue Ice , 1995 .

[15]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model: Part I: validation in stand-alone experiments , 1995 .

[16]  Josefino C. Comiso,et al.  Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer , 1994 .

[17]  Kevin W. Manning,et al.  Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)* , 2005 .

[18]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[19]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[20]  R. Pielke,et al.  Improving first‐order snow‐related deficiencies in a regional climate model , 1999 .

[21]  John C. King,et al.  Sensitivity of modelled Antarctic climate to surface and boundary‐layer flux parametrizations , 2001 .

[22]  Michael Lehning,et al.  Impact of the microstructure of snow on its temperature: A model validation with measurements from Summit, Greenland , 2008 .

[23]  Konrad Steffen,et al.  The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland , 2009 .

[24]  E. Martin,et al.  Turbulent fluxes above the snow surface , 1998, Annals of Glaciology.

[25]  Zong-Liang Yang,et al.  Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project) , 2004, Annals of Glaciology.

[26]  Ludovic Brucker,et al.  Modeling time series of microwave brightness temperature in Antarctica , 2009 .

[27]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[28]  Jean-Noël Thépaut,et al.  The Concordiasi Project in Antarctica , 2010 .

[29]  Ying-Hwa Kuo,et al.  Real-Time Mesoscale Modeling Over Antarctica: The Antarctic Mesoscale Prediction System* , 2003 .

[30]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[31]  Gert König-Langlo,et al.  Polar baseline surface radiation measurements during the International Polar Year 2007–2009 , 2010 .

[32]  Josefino C. Comiso,et al.  Variability and Trends in Antarctic Surface Temperatures from In Situ and Satellite Infrared Measurements , 2000 .

[33]  C. Genthon,et al.  Numerical modeling of snow cover over polar ice sheets , 1997, Annals of Glaciology.

[34]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[35]  S. Warren,et al.  Temperatures, heating rates and vapour pressures in near-surface snow at the South Pole , 2008, Journal of Glaciology.

[36]  V. Walden,et al.  Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical bulk Richardson number , 2009 .

[37]  E. Meijgaard,et al.  Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer , 2007 .

[38]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[39]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[40]  Catherine Prigent,et al.  Calculation of microwave land surface emissivity from satellite observations: validity of the specular approximation over snow-free surfaces? , 2005, IEEE Geoscience and Remote Sensing Letters.

[41]  Ludovic Brucker,et al.  Snow grain-size profiles deduced from microwave snow emissivities in Antarctica , 2010, Journal of Glaciology.

[42]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[43]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[44]  E. Brun,et al.  Impact Of Snow Drift On The Antarctic Ice Sheet Surface Mass Balance: Possible Sensitivity To Snow-Surface Properties , 2001 .

[45]  Delphine Six,et al.  Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica , 2010 .

[46]  Hervé Giordani,et al.  A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum , 1995 .

[47]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[48]  G. König‐Langlo,et al.  Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica , 2009, Antarctic Science.

[49]  R. Armstrong,et al.  Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling , 2010 .

[50]  R. Dickinson,et al.  The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d) , 2001 .

[51]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[52]  M. R. van den Broeke,et al.  Seasonal cycles of Antarctic surface energy balance from automatic weather stations , 2005, Annals of Glaciology.

[53]  David H. Bromwich,et al.  Atmospheric Moisture and Cloud Cover Characteristics Forecast by AMPS , 2008 .

[54]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[55]  Philip S. Anderson,et al.  Boundary layer physics over snow and ice , 2007 .

[56]  I. Gorodetskaya,et al.  Validation of a limited area model over Dome C, Antarctic Plateau, during winter , 2008 .

[57]  P. Moigne,et al.  Coupling of the FLake model to the Surfex externalized surface model , 2010 .

[58]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .