High‐order implicit time integration for unsteady incompressible flows

SUMMARY The spatial discretization of unsteady incompressible Navier–Stokes equations is stated as a system of differential algebraic equations, corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Asymptotic stability of Runge–Kutta and Rosenbrock methods applied to the solution of the resulting index-2 differential algebraic equations system is analyzed. A critical comparison of Rosenbrock, semi-implicit, and fully implicit Runge–Kutta methods is performed in terms of order of convergence and stability. Numerical examples, considering a discontinuous Galerkin formulation with piecewise solenoidal approximation, demonstrate the applicability of the approaches and compare their performance with classical methods for incompressible flows. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  S. Giuliani,et al.  Finite element solution of the unsteady Navier-Stokes equations by a fractional step method , 1982 .

[2]  P. Rentrop,et al.  Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations , 1979 .

[3]  Guillaume Houzeaux,et al.  A massively parallel fractional step solver for incompressible flows , 2009, J. Comput. Phys..

[4]  Hanke On Asymptotics in Case of Dae’s , 2007 .

[5]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[6]  H. Sung,et al.  An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations , 2002 .

[7]  Marcelo H. Kobayashi,et al.  A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .

[8]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[9]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[10]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[11]  Villardi de Montlaur,et al.  High-order discontinuous Galerkin methods for incompressible flows , 2009 .

[12]  Alexander Ostermann,et al.  Rosenbrock methods for partial differential equations and fractional orders of convergence , 1993 .

[13]  V. John,et al.  Adaptive time step control for the incompressible Navier-Stokes equations , 2010 .

[14]  R. Alexander,et al.  Design and implementation of DIRK integrators for stiff systems , 2003 .

[15]  Björn Engquist,et al.  Backward differentiation approximations of nonlinear differential/algebraic systems , 1988 .

[16]  Dominique Pelletier,et al.  Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow , 2009, J. Comput. Phys..

[17]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[18]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[19]  Adeline de Villardi de Montlaur,et al.  Métodos Runge-Kutta implícitos de alto orden para flujos incompresibles , 2011 .

[20]  C. Lubich,et al.  Linearly implicit time discretization of non-linear parabolic equations , 1995 .

[21]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[22]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Navier–Stokes equations using solenoidal approximations , 2009 .

[23]  R. Cerny,et al.  A computational model of pulsed-laser irradiation of hydrogenated amorphous silicon with phase changes , 1996 .

[24]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[25]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[26]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[27]  V. John,et al.  A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .

[28]  Per-Olof Persson,et al.  Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations , 2008, SIAM J. Sci. Comput..

[29]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[30]  Guido Kanschat,et al.  Energy norm a posteriori error estimation for divergence‐free discontinuous Galerkin approximations of the Navier–Stokes equations , 2008 .

[31]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..

[32]  Syvert P. Nørsett,et al.  One-step methods of hermite type for numerical integration of stiff systems , 1974 .

[33]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[34]  Lutz Angermann,et al.  New Rosenbrock methods of order 3 for PDAEs of index 2 , 2007 .

[35]  Dimitri J. Mavriplis,et al.  Implicit Solution of the Unsteady Euler Equations for High-Order Accurate Discontinuous Galerkin Discretizations , 2006 .

[36]  Ebroul Izquierdo Macana,et al.  On Asymptotics in Case of Linear Index-2 Differential-Algebraic Equations , 1998 .

[37]  Ian T. Cameron,et al.  A four-stage index 2 diagonally implicit Runge-Kutta method , 2002 .

[38]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[39]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[40]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[41]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[42]  Gerd Steinebach,et al.  Order-reduction of ROW-methods for DAEs and method of lines applications , 1995 .

[43]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[44]  Rolf Stenberg,et al.  MORTARING BY A METHOD OF J.A. NITSCHE , 1998 .

[45]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[46]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[47]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .