MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE
暂无分享,去创建一个
[1] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[2] Georg Kreisel,et al. Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.
[3] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[4] D. Dalen. Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .
[5] H. Luckhardt. Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .
[6] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[7] Helmut Schwichtenberg,et al. On bar recursion of types 0 and 1 , 1979, Journal of Symbolic Logic.
[8] D. Normann. The countable functionals , 1980 .
[9] Marc Bezem,et al. Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.
[10] Ulrich Berger,et al. Program Extraction from Classical Proofs , 1994, LCC.
[11] Jeremy Avigad,et al. Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .
[12] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.
[13] Alex K. Simpson,et al. Lazy Functional Algorithms for Exact Real Functionals , 1998, MFCS.
[14] S. Buss. Handbook of proof theory , 1998 .
[15] Paulo Oliva,et al. Modified Bar Recursion , 2002 .
[16] Ulrich Berger,et al. REVIEWS-Refined program extraction from classical proofs , 2003 .