METAPLECTIC OPERATORS ON C

The metaplectic representation describes a class of automorphism of the Heisenberg group H = H(G), defined for a locally compact abelian group G. For G = R, H is the usual Heisenberg group. For the case when G is the finite cyclic group Zn, only partial constructions are known. Here we present new results for this case and we obtain an explicit construction of the metaplectic operators on C. We also include applications to Gabor frames.

[1]  Peter G. Casazza,et al.  Fourier Transforms of Finite Chirps , 2006, EURASIP J. Adv. Signal Process..

[2]  Markus Neuhauser,et al.  An explicit construction of the metaplectic representation over a finite field. , 2002 .

[3]  Stephanie Koch,et al.  Harmonic Analysis In Phase Space , 2016 .

[4]  Shun’ichi Tanaka,et al.  Construction and classification of irreducible representations of special linear group of the second order over a finite field , 1967 .

[5]  P. Oonincx,et al.  On the Integral Representations for Metaplectic Operators , 2002 .

[6]  R. Ranga Rao,et al.  On some explicit formulas in the theory of Weil representation , 1993 .

[7]  Fast Quantum Maps , 1998, math-ph/9805012.

[8]  Peter G. Casazza,et al.  Chirps on finite cyclic groups , 2005, SPIE Optics + Photonics.

[9]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[10]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[11]  Thomas Strohmer,et al.  Numerical algorithms for discrete Gabor expansions , 1998 .

[12]  H. Feichtinger,et al.  Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .

[13]  Johannes Grassberger,et al.  A note on representations of the finite Heisenberg group and sums of greatest common divisors , 2001, Discret. Math. Theor. Comput. Sci..

[14]  Gitta Kutyniok,et al.  Wilson Bases for General Time-Frequency Lattices , 2005, SIAM J. Math. Anal..

[15]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[16]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[17]  H. Reiter Metaplectic Groups and Segal Algebras , 1989 .

[18]  L. Baggett,et al.  Multiplier representations of abelian groups , 1973 .

[19]  Srinivasa Varadhan,et al.  FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .

[20]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .