Invited review: Modelling of thermodynamics and diffusion in multicomponent systems

Abstract The availability of reliable materials data is key to the successful design of materials and manufacturing processes. Commercial alloys seldom consist of only two or three elements, but rather may contain a large number of elements for which the needed data are rarely available. The CALPHAD (calculation of phase diagrams method), as implemented in a number of software tools, enables the development of thermodynamic and diffusion databases and the extrapolation of these property data from binary and ternary systems to higher order systems. The computational methods used to calculate thermodynamic and diffusion properties can be invaluable in the design of new materials. In addition, the databases and software tools provide an efficient method of storing a wealth of data and allow efficient retrieval of the needed information. The present paper reviews the development and application of multicomponent thermodynamic and diffusion mobility databases using the CALPHAD method.

[1]  L. Höglund,et al.  Analysis of the Kirkendall effect, marker migration and pore formation , 2001 .

[2]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[3]  I. Ansara,et al.  Al-Mg COST 507 Thermochemical database for light metal alloys , 1998 .

[4]  G. B. Olson,et al.  Precipitation of paraequilibrium cementite: Experiments, and thermodynamic and kinetic modeling , 2002 .

[5]  M. Hillert,et al.  A compound-energy model of ordering in a phase with sites of different coordination numbers , 1986 .

[6]  W. Boettinger,et al.  On differential thermal analyzer curves for the melting and freezing of alloys , 2002 .

[7]  John Ågren,et al.  Diffusion in the B2-b.c.c. phase of the Al–Fe–Ni system—application of a phenomenological model , 1999 .

[8]  Diana Farkas,et al.  Atomistic simulation of point defects and diffusion in B2 NiAl , 1997 .

[9]  Gregory B Olson,et al.  Computer-aided design of transformation toughened blast resistant naval hull steels: Part I , 2007 .

[10]  Y. Mishin,et al.  Diffusion in the Ti–Al system , 2000 .

[11]  Ingo Steinbach,et al.  CALPHAD and Phase-Field Modeling: A Successful Liaison , 2007 .

[12]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[13]  Marcel H. F. Sluiter,et al.  Ab initio lattice stabilities of some elemental complex structures , 2006 .

[14]  A. Dinsdale SGTE data for pure elements , 1991 .

[15]  A. Kroupa,et al.  The Thermodynamic Database for the Development of Modern Lead-Free Solders , 2007 .

[16]  A. Engström,et al.  Assessment of Diffusional Mobilities in Face-centered Cubic Ni-Cr-Al Alloys , 1996 .

[17]  Metselaar,et al.  Definitions of terms for diffusion in the solid state (IUPAC Recommendations 1999) , 1999 .

[18]  Yunzhi Wang,et al.  Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti–Al–V , 2004 .

[19]  C. Campbell Assessment of the diffusion mobilites in the γ′ and B2 phases in the Ni–Al–Cr system , 2008 .

[20]  A. Smigelskas Zinc diffusion in alpha brass , 1947 .

[21]  Joel H. Hildebrand,et al.  SOLUBILITY. XII. REGULAR SOLUTIONS1 , 1929 .

[22]  M. Hillert Empirical methods of predicting and representing thermodynamic properties of ternary solution phases , 1980 .

[23]  Pil-Ryung Cha,et al.  A phase field model for isothermal solidification of multicomponent alloys , 2001 .

[24]  Jeff Simmons,et al.  A phase-field model for heat treatment applications in Ni-based alloys , 2006 .

[25]  A. Pelton,et al.  Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasichemical equations , 1987 .

[26]  O. Biest,et al.  Computer simulation of W-C-Co-V system diffusion couples , 2007 .

[27]  A. Engström,et al.  A homogenization approach to diffusion simulations applied to α + γ Fe–Cr–Ni diffusion couples , 2006 .

[28]  N. Saunders,et al.  Using JMatPro to model materials properties and behavior , 2003 .

[29]  W. A. Oates,et al.  Application of the cluster/site approximation to fcc phases in the Ni–Al–Cr–Re system , 2005 .

[30]  Chen Wang,et al.  Assessment techniques, database design and software facilities for thermodynamics and diffusion , 2007 .

[31]  R. Ferro,et al.  Remarks on crystallochemical aspects in thermodynamic modeling , 2002 .

[32]  P. Turchi Complex inorganic solids : structural, stability, and magnetic properties of alloys , 2005 .

[33]  L. Höglund,et al.  DICTRA, a tool for simulation of diffusional transformations in alloys , 2000 .

[34]  T. Abe,et al.  A description of the effect of short range ordering in the compound energy formalism , 2003 .

[35]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[36]  A. Alavi,et al.  Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations , 2003 .

[37]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[38]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[39]  D. Beke,et al.  Volume diffusion of iron in Fe3Al: Influence of ordering , 1997 .

[40]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[41]  P. J. Spencer A brief history of CALPHAD , 2008 .

[42]  F. Castro,et al.  Interdiffusion in multiphase, Al-Co-Cr-Ni-Ti diffusion couples , 2004 .

[43]  Henrik Strandlund,et al.  Unified treatment of Kirkendall shift and migration of phase interfaces , 2006 .

[44]  L. Girifalco Vacancy concentration and diffusion in order-disorder alloys , 1964 .

[45]  J. Morral,et al.  The effect of composition on interdiffusion in ternary alloys , 1986 .

[46]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[47]  H. Lukas,et al.  Straegies for the calculation of phase diagrams , 1982 .

[48]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[49]  B. Jönsson Assessment of the Mobility of Carbon in fee C-Cr-Fe-Ni Alloys , 1994 .

[50]  John Ågren,et al.  Diffusion in phases with several components and sublattices , 1982 .

[51]  I. Ansara,et al.  On the Sublattice Formalism Applied to the B2 Phase , 1999, International Journal of Materials Research.

[52]  Ludwig Boltzmann,et al.  Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten , 1894 .

[53]  Christoph Beckermann,et al.  Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification , 1997 .

[54]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[55]  Shigeru Yamauchi,et al.  Thermodynamic database MALT for Windows with gem and CHD , 2002 .

[56]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[57]  Bo Sundman,et al.  Reply to the paper: “When is a compound energy not a compound energy? A critique of the 2-sublattice order/disorder model” , 1997 .

[58]  I. Ansara,et al.  Thermodynamic modeling of ordered phases in the NiAl system , 1988 .

[59]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[60]  Hans Leo Lukas,et al.  Optimization of phase diagrams by a least squares method using simultaneously different types of data , 1977 .

[61]  B. Jönsson Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys , 1994 .

[62]  B. Jönsson Assessment of the Mobilities of Cr, Fe and Ni in bcc Cr-Fe-Ni Alloys , 1995 .

[63]  Combined probability distributions of random-walks: A new method to simulate diffusion processes , 2005 .

[64]  Gregory B Olson,et al.  Computational materials design and engineering , 2009 .

[65]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[66]  Toshihiro Tanaka,et al.  Computing surface tensions of binary and ternary alloy systems with the Gibbsian method , 2006 .

[67]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[68]  G. Ghosh,et al.  Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results , 2007 .

[69]  J. Hertz Josiah willard gibbs and teaching thermodynamics of materials (history) , 1992 .

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  J. Ågren,et al.  Phase-field simulation of sintering and related phenomena : A vacancy diffusion approach , 2006 .

[72]  Yunzhi Wang,et al.  Simulating Interdiffusion Microstructures in Ni-Al-Cr Diffusion Couples : A Phase Field Approach Coupled with CALPHAD Database , 2004 .

[73]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[74]  A. Pelton,et al.  Modeling short-range ordering in solutions , 2007 .

[75]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[76]  H. Mehrer Diffusion in Solid Metals and Alloys , 1990 .

[77]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[78]  L. Höglund,et al.  Diffusion in interstitial compounds with thermal and stoichiometric defects , 2005 .

[79]  B. Sundman,et al.  On the compound Energy Formalism applied to fcc ordering , 2001 .

[80]  C. Wagner,et al.  THE EVALUATION OF DATA OBTAINED WITH DIFFUSION COUPLES OF BINARY SINGLE- PHASE AND MULTIPHASE SYSTEMS. , 1969 .

[81]  Anton Van der Ven,et al.  Substitutional diffusion and Kirkendall effect in binary crystalline solids containing discrete vacancy sources and sinks , 2007 .

[82]  W. A. Oates,et al.  Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation , 2007 .

[83]  A. Fick V. On liquid diffusion , 1855 .

[84]  M. Dayananda Average effective interdiffusion coefficients and the Matano plane composition , 1996 .

[85]  David L. McDowell,et al.  Simulation-assisted materials design for the concurrent design of materials and products , 2007 .

[86]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[87]  M. Ohno,et al.  Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology , 2007 .

[88]  Michael F. Henry,et al.  Comparison of experimental and simulated multicomponent Ni-base superalloy diffusion couples , 2004 .

[89]  H. S. Liu,et al.  Thermodynamic modeling of the Au-In-Sn system , 2003 .

[90]  Ji-Cheng Zhao Methods for phase diagram determination , 2007 .

[91]  G. B. Olson,et al.  Systems design of high performance stainless steels I. Conceptual and computational design , 2000 .

[92]  J. Ågren,et al.  W content in Co binder during sintering of WC–Co , 1998 .

[93]  Mats Hillert,et al.  A two-sublattice model for molten solutions with different tendency for ionization , 1985 .

[94]  Henrik Strandlund,et al.  Diffusion Process Simulations - An Overview of Different Approaches , 2004 .

[95]  Gautam Ghosh,et al.  Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints , 2001 .

[96]  B. Jönsson On Ferromagnetic Ordering and Lattice Diffusion - A Simple Model / Uber ferromagnetische Ordnung und Gitterdiffusion Ein einfaches Modell , 1992 .

[97]  Jean Philibert,et al.  Atom movements: Diffusion and mass transport in solids , 1991 .

[98]  I. Ansara,et al.  Thermodynamic assessment of the AlNi system , 1997 .

[99]  J. Ågren,et al.  A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides , 2003 .

[100]  M. Hillert,et al.  Some viewpoints on the use of a computer for calculating phase diagrams , 1981 .

[101]  Pierre Villars,et al.  Handbook of Ternary Alloy Phase Diagrams , 1995 .

[102]  John Ågren,et al.  Numerical treatment of diffusional reactions in multicomponent alloys , 1982 .

[103]  J. Beech,et al.  Solidification processing 1997 , 1997 .

[104]  J. C. Brachet,et al.  Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K , 2008 .

[105]  J. Ågren,et al.  A regular solution model for phases with several components and sublattices, suitable for computer applications , 1981 .

[106]  J. Ågren,et al.  Applications of computational thermodynamics: Group 3: Application of computational thermodynamics to phase transformation nucleation and coarsening , 2000 .

[107]  A. Janotti,et al.  Solute diffusion in metals: larger atoms can move faster. , 2004, Physical review letters.

[108]  Jeff Simmons,et al.  Microstructural development involving nucleation and growth phenomena simulated with the Phase Field method , 2004 .

[109]  J. Ågren Computer Simulations of Diffusional Reactions in Complex Steels , 1992 .

[110]  Carelyn E. Campbell,et al.  A new technique for evaluating diffusion mobility parameters , 2005 .

[111]  Erich Königsberger,et al.  Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm , 1991 .

[112]  P. Raghavan,et al.  An integrated framework for multi-scale materials simulation and design , 2004 .

[113]  Michael F. Ashby,et al.  Correlations for diffusion constants , 1980 .

[114]  Gregory B Olson,et al.  Computational thermodynamics and the kinetics of martensitic transformation , 2001 .

[115]  Irina V. Belova,et al.  Atomistic Modeling of Diffusion in the TiAl Compound , 2005 .

[116]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[117]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[118]  Fan Zhang,et al.  The PANDAT software package and its applications , 2002 .

[119]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[120]  W. Bragg,et al.  The effect of thermal agitation on atomic arrangement in alloys , 1935 .

[121]  W. A. Oates,et al.  The cluster/site approximation for multicomponent solutions — A practical alternative to the cluster variation method , 1996 .

[122]  V. Raghavan,et al.  User applications of alloy phase diagrams , 2009 .

[123]  J. Ågren,et al.  Models for numerical treatment of multicomponent diffusion in simple phases , 1992 .

[124]  K. Hack,et al.  The SGTE casebook : thermodynamics at work , 1996 .

[125]  Zi-kui Liu,et al.  Modeling the atomic transport kinetics in high-lead solders , 1998 .

[126]  Bo Sundman,et al.  Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements , 2005 .

[127]  J. Ågren Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels , 1982 .

[128]  W. A. Oates,et al.  IMPROVED CLUSTER-SITE APPROXIMATION FOR THE ENTROPY OF MIXING IN MULTICOMPONENT SOLID SOLUTIONS , 1999 .

[129]  Mei Li,et al.  Virtual aluminum castings: An industrial application of ICME , 2006 .

[130]  Alan Dinsdale,et al.  MTDATA - thermodynamic and phase equilibrium software from the National Physical Laboratory , 2002 .

[131]  C. Handwerker,et al.  The effect of Pb contamination on the solidification behavior of Sn-Bi solders , 2001 .

[132]  W. A. Oates,et al.  Cluster/site approximation calculation of the ordering phase diagram for Cd–Mg alloys , 2001 .

[133]  M. Koiwa Diffusion in Materials—History and Recent Developments , 1998 .

[134]  Hyuck-Mo Lee,et al.  A thermodynamic study of phase equilibria in the Sn-Bi-Pb solder system , 1998 .

[135]  F. H. Riddle AMERICAN CERAMIC SOCIETY , 1921 .

[136]  Ursula R. Kattner Efficient phase diagram information and computational thermodynamics , 2006 .

[137]  J. Ågren,et al.  A phenomenological treatment of diffusion in Al-Fe and Al-Ni alloys having B2-b.c.c. ordered structure , 1999 .

[138]  W. Boettinger,et al.  Transient liquid-phase bonding in the Ni-Al-B system , 2000 .

[139]  A. Janotti,et al.  Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations , 2005 .

[140]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[141]  R. Braun,et al.  On the magnetic anomalies of self- and heterodiffusion in BCC iron , 1986 .