Constraining computational models using electron microscopy wiring diagrams

Numerous efforts to generate "connectomes," or synaptic wiring diagrams, of large neural circuits or entire nervous systems are currently underway. These efforts promise an abundance of data to guide theoretical models of neural computation and test their predictions. However, there is not yet a standard set of tools for incorporating the connectivity constraints that these datasets provide into the models typically studied in theoretical neuroscience. This article surveys recent approaches to building models with constrained wiring diagrams and the insights they have provided. It also describes challenges and the need for new techniques to scale these approaches to ever more complex datasets.

[1]  Robert H Singer,et al.  Quantitative mRNA imaging throughout the entire Drosophila brain , 2016, Nature Methods.

[2]  Carey E. Priebe,et al.  Statistical Inference on Random Dot Product Graphs: a Survey , 2017, J. Mach. Learn. Res..

[3]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[4]  Gáspár Jékely,et al.  Neuronal connectome of a sensory-motor circuit for visual navigation , 2014, eLife.

[5]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[6]  Konrad Kording,et al.  Automatic discovery of cell types and microcircuitry from neural connectomics , 2014, eLife.

[7]  Louis K. Scheffer,et al.  A connectome of a learning and memory center in the adult Drosophila brain , 2017, eLife.

[8]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[9]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[10]  Michael B. Reiser,et al.  A Connectome Based Hexagonal Lattice Convolutional Network Model of the Drosophila Visual System , 2018, ArXiv.

[11]  Alexander Borst,et al.  A biophysical mechanism for preferred direction enhancement in fly motion vision , 2018, PLoS Comput. Biol..

[12]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[13]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[14]  Sean R Eddy,et al.  A genetic, genomic, and computational resource for exploring neural circuit function , 2020, eLife.

[15]  Ashok Litwin-Kumar,et al.  A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity , 2019, bioRxiv.

[16]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[17]  John W. Phillips,et al.  Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex , 2018, bioRxiv.

[18]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[19]  Nicolas Brunel,et al.  Is cortical connectivity optimized for storing information? , 2016, Nature Neuroscience.

[20]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[21]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.

[22]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[23]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[24]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[25]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[26]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[27]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Eric Shea-Brown,et al.  Predicting how and when hidden neurons skew measured synaptic interactions , 2017, bioRxiv.

[29]  Guillaume Hennequin,et al.  Motor primitives in space and time via targeted gain modulation in cortical networks , 2018 .

[30]  Ila R. Fiete,et al.  Systematic errors in connectivity inferred from activity in strongly coupled recurrent circuits , 2019, bioRxiv.

[31]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[32]  Gary Huang,et al.  Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain , 2019, eLife.

[33]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[34]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[35]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[36]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[37]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[38]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[39]  A. Wanner,et al.  Whitening of odor representations by the wiring diagram of the olfactory bulb , 2019, Nature Neuroscience.

[40]  Marta Zlatic,et al.  Organization of the Drosophila larval visual circuit , 2017, bioRxiv.

[41]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[42]  Haim Sompolinsky,et al.  Optimal Degrees of Synaptic Connectivity , 2017, Neuron.

[43]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  Michael B. Reiser,et al.  Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila , 2017, Nature Neuroscience.

[45]  Jesse Geneson,et al.  Fixed Points of Competitive Threshold-Linear Networks , 2018, Neural Computation.

[46]  A. Cardona,et al.  A circuit mechanism for the propagation of waves of muscle contraction in Drosophila , 2016, eLife.

[47]  Michael Häusser,et al.  Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo , 2014, Nature Methods.

[48]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[49]  Yee Lian Chew,et al.  Network control principles predict neuron function in the Caenorhabditis elegans connectome , 2017, Nature.

[50]  Albert Cardona,et al.  The wiring diagram of a glomerular olfactory system , 2016 .

[51]  Eric Shea-Brown,et al.  From the statistics of connectivity to the statistics of spike times in neuronal networks , 2017, Current Opinion in Neurobiology.

[52]  A. Wanner,et al.  Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb , 2016, Nature Neuroscience.

[53]  T. Clandinin,et al.  Linear Summation Underlies Direction Selectivity in Drosophila , 2018, Neuron.

[54]  Zhiyuan Lu,et al.  The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling , 2016, eLife.

[55]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[56]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[57]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[58]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[59]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[60]  Adam M. Packer,et al.  Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit , 2017, NIPS.

[61]  R. Sommer,et al.  System-wide Rewiring Underlies Behavioral Differences in Predatory and Bacterial-Feeding Nematodes , 2013, Cell.