Grape stalk fibers as reinforcing filler for polymer composites with a polystyrene matrix

[1]  S. Bajwa,et al.  Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites: Research Article , 2018 .

[2]  A. Benchabane,et al.  Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes , 2018 .

[3]  S. Mani,et al.  Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. , 2018, Carbohydrate polymers.

[4]  Mohammad Jawaid,et al.  Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review , 2018 .

[5]  D. Sujan,et al.  Effect of filler load on the curing behavior and mechanical and thermal performance of wood flour filled thermoset composites , 2017 .

[6]  Laura Tomppo,et al.  A review on new bio-based constituents for natural fiber-polymer composites , 2017 .

[7]  H. Ning,et al.  Hemp fiber reinforced polypropylene composites: The effects of material treatments , 2017 .

[8]  J. Militký,et al.  Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior , 2017 .

[9]  E. Jayamani,et al.  Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment , 2017 .

[10]  Dmitry V. Evtuguin,et al.  Caracterização do Engaço da Uva e Avaliação do seu Potencial como Matéria‐Prima Lenhocelulósica , 2016 .

[11]  Ramadevi Punyamurthy,et al.  Physical Characterization of Natural Lignocellulosic Single Areca Fiber , 2015 .

[12]  David Hui,et al.  Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers , 2015 .

[13]  Jinchun Zhu,et al.  Improving mechanical properties of novel flax/tannin composites through different chemical treatments , 2015 .

[14]  C. Navas,et al.  Comparative Study of Agroindustrial Wastes for their use in Polymer Matrix Composites , 2015 .

[15]  Yiqi Yang,et al.  Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment , 2014 .

[16]  A. J. Zattera,et al.  Efeito do tratamento alcalino de fibras de Curauá sobre as propriedades de compósitos de matriz biodegradável , 2014 .

[17]  Ademir J. Zattera,et al.  Influência do tratamento químico da fibra de bananeira em compósitos de poli(etileno-co-acetato de vinila) com e sem agente de expansão , 2014 .

[18]  S. Amico,et al.  Thermal behavior and the compensation effect of vegetal fibers , 2014, Cellulose.

[19]  Helena Pereira,et al.  Chemical characterization of different granulometric fractions of grape stalks waste , 2013 .

[20]  Sandro Campos Amico,et al.  Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites , 2013 .

[21]  Qinglin Wu,et al.  Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. , 2013, Biomacromolecules.

[22]  Giorgia Spigno,et al.  Influence of cultivar on the lignocellulosic fractionation of grape stalks , 2013 .

[23]  B. Riedl,et al.  Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. , 2012, Carbohydrate polymers.

[24]  A. Singha,et al.  Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties , 2012 .

[25]  J. Nie,et al.  Study on poly(lactic acid)/natural fibers composites , 2012 .

[26]  J. Qiu,et al.  The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: Effect of aminosilane with different alkoxy groups , 2012 .

[27]  Ping Lu,et al.  Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins , 2012 .

[28]  Dmitry V. Evtuguin,et al.  Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces , 2012 .

[29]  K. Mylsamy,et al.  Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites , 2011 .

[30]  Huaping Wang,et al.  Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. , 2011, The journal of physical chemistry. B.

[31]  D. Rosa,et al.  Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites , 2011 .

[32]  Mohammad S. Islam,et al.  Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites , 2011 .

[33]  J. Li,et al.  The Effect of Maleic Anhydride Graft on the Interfacial Adhesion of Carbon Fiber Reinforced Thermoplastic Polystyrene Composite , 2009 .

[34]  S. Kalia,et al.  Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites—A Review , 2009 .

[35]  M. Paoli,et al.  Recycled polypropylene reinforced with curaua fibers by extrusion , 2009 .

[36]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[37]  P. Antich,et al.  Mechanical behavior of high impact polystyrene reinforced with short sisal fibers , 2006 .

[38]  Maria Madalena de Camargo Forte,et al.  Aspectos Morfológicos e Relação Estrutura-Propriedades de Poliestireno de Alto Impacto , 2001 .

[39]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .