A breakdown of the block CG method
暂无分享,去创建一个
[1] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[2] C. G. Broyden. A new taxonomy of conjugate gradient methods , 1996 .
[3] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[4] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[5] C. G. Broyden. A note on the block conjugate gradient method of O'leary , 1995 .
[6] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[7] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[8] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[11] C. Brezinski,et al. A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .
[12] L. Nazareth. A conjugate direction algorithm without line searches , 1977 .
[13] A Comparison of Three Basic Conjugate Direction Methods , 1996 .
[14] D. Luenberger. Hyperbolic Pairs in the Method of Conjugate Gradients , 1969 .
[15] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[16] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[17] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[18] Cs.J. Hegedüs,et al. Generating conjugate directions for arbitrary matrices by matrix equations I. , 1991 .
[19] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .