RELAÇÕES TOPOGRÁFICAS DOS SACOS AÉREOS DE CODORNAS (Coturnix coturnix)

The morphology of birds is rarely reported, hindering veterinary practice in these animals. The respiratory system is distinguished by the presence of air bags, a structure of fundamental importance to the birds, but very susceptible to diseases. Thus, the objective of this study was to describe the anatomy of the air sacs (AS) in quails regarding their topographical relationships. To this, fifteen quails that had their respiratory tract injected with Neoprene, stained and fixed in formalin 10% latex were dissected. Cervical AS is unique and has a middle portion located between the brachiocephalic arteries. The clavicular AS is also odd and starts near the first thoracic vertebrae. The cranial and caudal thoracic AS are lateral to the lung and medially to the ribs. The cranial thoracic AS goes from the dorsal lateral-cranial margin to the ventral margin of the liver, and the caudal thoracic AS goes from the fourth lateral-caudal margin of the liver to the cranial third of the abdominal AS. Abdominal AS goes from the liver to the base of the vent area. However, the air sacs in quails studied in this research follow a topographic pattern, forming diverticula between adjacent organs.

[1]  A. Borges,et al.  Deformidades Ósseas causadas pela carência de cálcio em aves de corte , 2015 .

[2]  Jeffery W. Rankin,et al.  Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size , 2014, PeerJ.

[3]  A. V. Pires,et al.  Características de carcaça de codornas de corte alimentadas com diferentes níveis de proteína e energia , 2014 .

[4]  G. C. Guimarães,et al.  Descrição anatômica topográfica dos sacos aéreos de patos, Anas platyrhynchos (Aves: Anseriformes) = Anatomical and topographic description of the air bags of mallard, Anas platyrhynchos (Aves: Anseriformes) , 2014 .

[5]  Robert L. Cieri,et al.  Unidirectional pulmonary airflow patterns in the savannah monitor lizard , 2013, Nature.

[6]  A. A. Nascimento,et al.  Morfologia do epitélio intestinal de codornas japonesas alimentadas com parede celular da Saccharomyces cerevisiae , 2013 .

[7]  A. V. Pires,et al.  Desempenho de codornas de corte submetidas a diferentes níveis de proteína bruta e energia metabolizável , 2013 .

[8]  G. D. A. D. Rosa,et al.  Perfil hematológico de codornas japonesas (Coturnix japonica) sob estresse térmico , 2011 .

[9]  E. Buckles,et al.  Histopathological and Immunohistochemical Study of Air Sac Lesions Induced by Two Strains of Infectious Bronchitis Virus , 2011, Journal of Comparative Pathology.

[10]  R. M. Franco,et al.  Perfil de sensibilidade antimicrobiana e detecção do gene ISS pela reação em cadeia da polimerase na tipificação de Escherichia coli patogênica em codornas de corte sob inspeção sanitária , 2010 .

[11]  N. Martins,et al.  Indirect ELISA for the detection of IgG specific to Newcastle disease virus in quail serum , 2007 .

[12]  R. Haziroğlu,et al.  Gross Morphological and Histological Features of Larynx, Trachea and Syrinx in Japanese Quail , 2007, Anatomia, histologia, embryologia.

[13]  R. Haziroğlu,et al.  Gross morphological features of the lung and air sac in the Japanese quail. , 2006, The Journal of veterinary medical science.

[14]  M. Fedde Relationship of structure and function of the avian respiratory system to disease susceptibility. , 1998, Poultry science.

[15]  Marc F. Schmidt,et al.  The respiratory-vocal system of songbirds: anatomy, physiology, and neural control. , 2014, Progress in brain research.

[16]  Martinho de Almeida,et al.  Evolução do melhoramento genético de aves no Brasil , 2009 .