Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials

We propose a new, unified approach to solving jump-diffusion partial integro-differential equations (PIDEs) that often appear in mathematical finance. Our method consists of the following steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation, we use standard finite-difference methods, which for multi-dimensional problems could also include splitting on various dimensions. For the jump part, we transform the jump integral into a pseudo-differential operator. Then for various jump models we show how to construct an appropriate first and second order approximation on a grid which supersets the grid that we used for the diffusion part. These approximations make the scheme to be unconditionally stable in time and preserve positivity of the solution which is computed either via a matrix exponential, or via P{\'a}de approximation of the matrix exponent. Various numerical experiments are provided to justify these results.

[1]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[2]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[3]  A. Strauss Numerical Analysis of Jump-Diffusion Models for Option Pricing , 2006 .

[4]  Dilip B. Madan,et al.  The multinomial option pricing model and its Brownian and poisson limits , 1989 .

[5]  K. Manjunatha,et al.  Derivatives , 2006 .

[6]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[7]  America Merrill Lynch,et al.  Credit value adjustment for credit default swaps via the structural default model , 2009 .

[8]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[9]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[10]  Leif Andersen,et al.  Asymptotics for Exponential Levy Processes and Their Volatility Smile: Survey and New Results , 2012, 1206.6787.

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Judith J. McDonald,et al.  Inverses of M-type matrices created with irreducible eventually nonnegative matrices , 2006 .

[13]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[14]  Peter Carr,et al.  On the Numerical Evaluation of Option Prices in Jump Diffusion Processes , 2007 .

[15]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[16]  N. N. Yanenko Application of the Method of Fractional Steps to Boundary Value Problems for Laplace’s and Poisson’s Equations , 1971 .

[17]  D. Tangman,et al.  Exponential time integration and Chebychev discretisation schemes for fast pricing of options , 2008 .

[18]  A. Itkin Pricing options with VG model using FFT , 2005, physics/0503137.

[19]  George Labahn,et al.  A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..

[20]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[21]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[22]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[23]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[24]  Eduardo S. Schwartz,et al.  Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis , 1977 .

[25]  A. Berman,et al.  2. Nonnegative Matrices , 1994 .

[26]  Dawn Hunter Robust numerical valuation of European and American options under the CGMY process , 2007 .

[27]  B. Khesin,et al.  The logarithm of the derivative operator and higher spin algebras ofW∞ type , 1993 .

[28]  Andrey Itkin,et al.  Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .

[29]  Daniel B. Szyld,et al.  Generalizations of M-matrices which may not have a nonnegative inverse , 2008 .

[30]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[31]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[32]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[33]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[34]  Sebastian Jaimungal,et al.  Option Valuation using Fourier Space Time Stepping , 2007, ArXiv.

[35]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[36]  Economical difference schemes for parabolic equations with mixed derivatives , 1964 .

[37]  Andrey Itkin,et al.  Efficient solution of structural default models with correlated jumps and mutual obligations , 2014, Int. J. Comput. Math..

[38]  Ye.G. D'yakonov Difference schemes with a separable operator for general second order parabolic equations with variable coefficients , 1964 .

[39]  Andrey Itkin,et al.  Splitting and Matrix Exponential Approach for Jump-Diffusion Models with Inverse Normal Gaussian, Hyperbolic and Meixner Jumps , 2014, Algorithmic Finance.

[40]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[41]  Xin Liu,et al.  Fast exponential time integration scheme for option pricing with jumps , 2012, Numer. Linear Algebra Appl..

[42]  Mechthild Thalhammer,et al.  Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .

[43]  Michael J. Tsatsomeros,et al.  Reachability and Holdability of Nonnegative States , 2008, SIAM J. Matrix Anal. Appl..

[44]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[45]  J. Verwer,et al.  Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling , 1999 .

[46]  E. Eberlein Jump–Type Lévy Processes , 2009 .

[47]  P. Carr,et al.  Option Pricing, Interest Rates and Risk Management: Towards a Theory of Volatility Trading , 2001 .

[48]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[49]  Andrey Itkin,et al.  HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs , 2014, 1403.1804.

[50]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[51]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[52]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[53]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .