Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints

As a widely used configuration for dielectric elastomer (DE) actuators, DE tube actuators (or cylindrical actuators) are also found to be susceptible to electromechanical instability (EMI), which may lead to a premature electrical breakdown (EB), and inhibit the potential actuation of DE actuators. This work investigates the electromechanical response of a DE tube actuator with and without boundary constraints to demonstrate an alternative to avoid EMI while achieving large actuation. Our simulation results based on the Gent strain energy model show that the EMI of a DE tube actuator can be eliminated, and larger actuation deformation can be achieved by applying boundary constraints. As a result of these constraints, consideration is also given to the possible mechanical buckling failure that may occur. Mechanisms of possible failure modes of constrained and unconstrained DE tube actuators, such as electromechanical instability, electrical breakdown and mechanical buckling, are elucidated. This paper should provide better theoretical guidance on how to improve the actuation performance of DE actuators, thus leading to the optimal design of DE-based devices.

[1]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[2]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[3]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[4]  M. Boyce,et al.  Constitutive models of rubber elasticity: A review , 2000 .

[5]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[6]  Ron Pelrine,et al.  Dielectric elastomer artificial muscle actuators: toward biomimetic motion , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Richard Heydt,et al.  Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  R. Pelrine,et al.  Actuation Response of Polyacrylate Dielectric Elastomers , 2003 .

[9]  Ron Pelrine,et al.  Multiple-degrees-of-freedom electroelastomer roll actuators , 2004 .

[10]  Danilo De Rossi,et al.  Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation , 2004 .

[11]  J. Teng,et al.  Cylindrical shells under non-uniform external pressure , 2004 .

[12]  J. M. Rotter,et al.  Buckling of thin metal shells , 2004 .

[13]  R. McMeeking,et al.  Electrostatic Forces and Stored Energy for Deformable Dielectric Materials , 2005 .

[14]  Edoardo Mazza,et al.  Modeling of a pre-strained circular actuator made of dielectric elastomers , 2005 .

[15]  Mary Frecker,et al.  A Nonlinear Model for Dielectric Elastomer Membranes , 2005 .

[16]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[17]  Ron Pelrine,et al.  Interpenetrating Polymer Networks for High‐Performance Electroelastomer Artificial Muscles , 2006 .

[18]  Zhigang Suo,et al.  Electromechanical hysteresis and coexistent states in dielectric elastomers , 2007 .

[19]  John F. Muth,et al.  Dielectric elastomer based prototype fiber actuators , 2007 .

[20]  Z. Suo,et al.  Method to analyze electromechanical stability of dielectric elastomers , 2007 .

[21]  D. De Rossi,et al.  Folded dielectric elastomer actuators , 2007 .

[22]  Andrew N. Norris,et al.  Comment on “Method to analyze electromechanical stability of dielectric elastomers” [Appl. Phys. Lett.91, 061921 (2007)] , 2007, 0709.2497.

[23]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[24]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[25]  Z. Suo,et al.  A nonlinear field theory of deformable dielectrics , 2008 .

[26]  Zhigang Suo,et al.  Electrostriction in elastic dielectrics undergoing large deformation , 2008 .

[27]  Jacob Leidner,et al.  Linear actuation in coextruded dielectric elastomer tubes , 2008 .

[28]  Z. Suo,et al.  Propagation of instability in dielectric elastomers , 2008 .

[29]  G. Kofod,et al.  A Co-Axial Dielectric Elastomer Actuator , 2008 .

[30]  Z. Suo,et al.  Method to analyze programmable deformation of dielectric elastomer layers , 2008 .

[31]  Yanju Liu,et al.  Electromechanical stability of dielectric elastomer , 2009 .

[32]  Zhigang Suo,et al.  Dielectric elastomers of interpenetrating networks , 2009 .

[33]  Z. Suo,et al.  Large deformation and electromechanical instability of a dielectric elastomer tube actuator , 2010 .

[34]  Zhigang Suo,et al.  Resonant behavior of a membrane of a dielectric elastomer , 2010 .

[35]  Z. Suo,et al.  Theory of dielectric elastomers capable of giant deformation of actuation. , 2010, Physical review letters.

[36]  Z. Suo,et al.  Mechanisms of Large Actuation Strain in Dielectric Elastomers , 2011 .

[37]  W. Hong,et al.  Modeling Viscoelastic Dielectrics , 2011 .

[38]  Carl T.F. Ross Shell instability of pressure vessels , 2011 .

[39]  Z. Suo,et al.  Electromechanical phase transition in dielectric elastomers , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Zhigang Suo,et al.  Extension limit, polarization saturation, and snap-through instability of dielectric elastomers , 2011 .

[41]  Z. Suo,et al.  Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers , 2012 .

[42]  Zhigang Suo,et al.  The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer , 2012 .

[43]  Z. Suo,et al.  Complex interplay of nonlinear processes in dielectric elastomers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Zhigang Suo,et al.  A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers , 2012 .

[45]  Z. Suo,et al.  Large, Uni-directional Actuation in Dielectric Elastomers Achieved By Fiber Stiffening , 2012 .

[46]  Thao D. Nguyen,et al.  Viscoelastic effects on electromechanical instabilities in dielectric elastomers , 2013 .

[47]  Liying Jiang,et al.  Failure analysis of a dielectric elastomer plate actuator considering boundary constraints , 2013 .