Data assimilation methods for ocean tides

[1]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[2]  Bruce M. Howe,et al.  Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions , 1995 .

[3]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[4]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[5]  R. Parker Geophysical Inverse Theory , 1994 .

[6]  D. Cartwright,et al.  A Proudman-function expansion of the M2 tide in the Mediterranean Sea from satellite altimetry and coastal gauges , 1992 .

[7]  W. Zahel Modeling ocean tides with and without assimilating data , 1991 .

[8]  Olivier Francis,et al.  Some results of heterogeneous data inversions for oceanic tides , 1991 .

[9]  H. Stommel,et al.  Comparison of M2 tidal currents observed by some deep moored current meters with those of the Schwiderski and Laplace models , 1991 .

[10]  A. Bennett Inverse methods for assessing ship-of-opportunity networks and estimating circulation and winds from tropical expendable bathythermograph data , 1990 .

[11]  Richard D. Ray,et al.  Oceanic tides from Geosat altimetry , 1990 .

[12]  D. Cartwright,et al.  Tidal estimation in the Pacific with application to SEASAT altimetry , 1988 .

[13]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[14]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[15]  D. E. Cartwright,et al.  Extraction of the M2 ocean tide from SEASAT altimeter data , 1986 .

[16]  D. Rao,et al.  Objective analysis for tides in a closed basin , 1985 .

[17]  G. Platzman Normal Modes of the World Ocean. Part III: A Procedure for Tidal Synthesis , 1984 .

[18]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: M2 Tides in Bass Strait , 1984 .

[19]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: Tidal Theory , 1982 .

[20]  Kirk S. Hansen,et al.  Normal Modes of the World Ocean. Part II: Description of Modes in the Period Range 8 to 80 Hours , 1981 .

[21]  E. W. Schwiderski Ocean tides, part II: A hydrodynamical interpolation model , 1980 .

[22]  C. Pekeris,et al.  Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  E. W. Schwiderski Global Ocean Tides. Part I. A Detailed Hydrodynamical Interpolation Model. , 1978 .

[24]  G. Platzman Normal Modes of the World Ocean. Part I. Design of a Finite-Element Barotropic Model , 1978 .

[25]  C. Provost,et al.  Finite element method for spectral modelling of tides , 1978 .

[26]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73 , 1976 .

[27]  David J. Schwab,et al.  Two dimensional normal modes in arbitrary enclosed basins on a rotating Earth: application to Lakes Ontario and Superiror , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  George W. Platzman,et al.  Normal Modes of the Atlantic and Indian Oceans , 1975 .

[29]  G. Platzman Two-Dimensional Free Oscillations in Natural Basins , 1972 .

[30]  J. Miles Resonant response of harbours: an equivalent-circuit analysis , 1971, Journal of Fluid Mechanics.

[31]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[32]  A. Yaglom Second-order Homogeneous Random Fields , 1961 .

[33]  S. F. Grace The Principal Diurnal Constituent of Tidal Motion in the Gulf of Mexico , 1932 .

[34]  J. Proudman On the dynamical equations of the tides , 1932 .

[35]  J. Proudman On the Dynamical Equations of the Tides: Part I.-Tidal Systems with Finite Freedom , 1920 .