On the Difference Hierarchy in Countably Based T0-Spaces

We establish some results on some variants of the Hausdorff difference hierarchy. In particular, we extend the recently developed theory of difference hierarchy over the open sets in @w-algebraic domains to a similar theory for @w-continuous domains, and prove some analogs of the Hausdorff-Kuratowski theorem for k-partitions. We discuss also a broad class of effective topological spaces closely relevant to our study of the difference hierarchy and to computability in topology.

[1]  Y. Ershov A hierarchy of sets. I , 1968 .

[2]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[3]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[4]  Klaus W. Wagner,et al.  The boolean hierarchy of NP-partitions , 2008, Inf. Comput..

[5]  Klaus Weihrauch,et al.  Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms , 1994, CCCG.

[6]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[7]  A. Kechris Classical descriptive set theory , 1987 .

[8]  Victor L. Selivanov,et al.  Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..

[9]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[10]  Victor L. Selivanov,et al.  The quotient algebra of labeled forests modulo h-equivalence , 2007 .

[11]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[12]  V. Selivanov Boolean Hierarchies of Partitions over a Reducible Base , 2004 .

[13]  Yuri Leonidovich Ershov,et al.  Theory of Domains and Nearby (Invited Paper) , 1993, Formal Methods in Programming and Their Applications.

[14]  Armin Hemmerling Characterizations of the class Deltata2 over Euclidean spaces , 2004, Math. Log. Q..

[15]  V. L. Selivanov Hierarchy of limiting computations , 1984 .

[16]  Armin Hemmerling,et al.  The Hausdorff-Ershov Hierarchy in Euclidean Spaces , 2006, Arch. Math. Log..

[17]  Victor L. Selivanov,et al.  Hierarchies in φ‐spaces and applications , 2005, Math. Log. Q..

[18]  Victor L. Selivanov Wadge Degrees of [omega]-Languages of Deterministic Turing Machines , 2003, RAIRO Theor. Informatics Appl..

[19]  Armin Hemmerling,et al.  Hierarchies of Function Classes Defined by the First-Value Operator: (Extended Abstract) , 2005, CCA.