On the Difference Hierarchy in Countably Based T0-Spaces
暂无分享,去创建一个
[1] Y. Ershov. A hierarchy of sets. I , 1968 .
[2] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[3] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[4] Klaus W. Wagner,et al. The boolean hierarchy of NP-partitions , 2008, Inf. Comput..
[5] Klaus Weihrauch,et al. Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms , 1994, CCCG.
[6] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[7] A. Kechris. Classical descriptive set theory , 1987 .
[8] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[9] Victor L. Selivanov,et al. Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..
[10] Victor L. Selivanov,et al. The quotient algebra of labeled forests modulo h-equivalence , 2007 .
[11] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[12] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[13] Yuri Leonidovich Ershov,et al. Theory of Domains and Nearby (Invited Paper) , 1993, Formal Methods in Programming and Their Applications.
[14] Armin Hemmerling. Characterizations of the class Deltata2 over Euclidean spaces , 2004, Math. Log. Q..
[15] V. L. Selivanov. Hierarchy of limiting computations , 1984 .
[16] Armin Hemmerling,et al. The Hausdorff-Ershov Hierarchy in Euclidean Spaces , 2006, Arch. Math. Log..
[17] Victor L. Selivanov,et al. Hierarchies in φ‐spaces and applications , 2005, Math. Log. Q..
[18] Victor L. Selivanov. Wadge Degrees of [omega]-Languages of Deterministic Turing Machines , 2003, RAIRO Theor. Informatics Appl..
[19] Armin Hemmerling,et al. Hierarchies of Function Classes Defined by the First-Value Operator: (Extended Abstract) , 2005, CCA.