Galerkin finite element methods for the generalized Klein-Gordon-Zakharov equations

Abstract In this paper, we propose Galerkin finite element methods to investigate the evolution of the generalized Klein–Gordon–Zakharov equations. The spatial discretization is based on Galerkin finite element method. The combination of time-splitting method and finite difference method is used for temporal discretization. The accuracy and efficiency of our numerical schemes are verified by the error norms, conservation laws and the application in nonrelativistic limit regime and in three spatial dimension of different numerical experiments.

[1]  D. R. Nicholson Topics in Strong Langmuir Turbulence , 1982 .

[2]  Mehdi Dehghan,et al.  The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods , 2013, Comput. Phys. Commun..

[3]  D. Ter Haar,et al.  Langmuir turbulence and modulational instability , 1978 .

[4]  Xiaofei Zhao On error estimates of an exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system , 2016 .

[5]  K. Nakanishi,et al.  FROM THE KLEIN–GORDON–ZAKHAROV SYSTEM TO THE NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[6]  Kimitoshi Tsutaya,et al.  Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations , 1994 .

[7]  Li Shan,et al.  Partitioned Time Stepping Method for Fully Evolutionary Stokes-Darcy Flow with Beavers-Joseph Interface Conditions , 2013, SIAM J. Numer. Anal..

[8]  Rémi Carles,et al.  Multiphase Weakly Nonlinear Geometric Optics for Schrödinger Equations , 2009, SIAM J. Math. Anal..

[9]  Yali Gao,et al.  A time-splitting Galerkin finite element method for the Davey-Stewartson equations , 2015, Comput. Phys. Commun..

[10]  K. Nakanishi,et al.  Energy convergence for singular limits of Zakharov type systems , 2008 .

[11]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[12]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[13]  Anjan Biswas,et al.  1-Soliton solution of the Klein-Gordon-Zakharov equation with power law nonlinearity , 2010, Appl. Math. Comput..

[14]  T. Colin,et al.  A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence , 1996 .

[15]  Branko Najman The nonrelativistic limit of the nonlinear Klein-Gordon equation , 1990 .

[16]  Liquan Mei,et al.  Implicit-explicit multistep methods for general two-dimensional nonlinear Schrödinger equations , 2016 .

[17]  Boris A. Malomed,et al.  Solitons in nonlinear lattices , 2011 .

[18]  Yuan Guangwei,et al.  Global smooth solution for the Klein–Gordon–Zakharov equations , 1995 .

[19]  Jibin Li Exact explicit travelling wave solutions for (n + 1)-dimensional Klein–Gordon–Zakharov equations☆ , 2007 .

[20]  Anders Wäänänen,et al.  Advanced resource connector middleware for lightweight computational Grids , 2007 .

[21]  A. Biswas,et al.  Domain wall and bifurcation analysis of the Klein-Gordon Zakharov equation in (1+2)-dimensions with power law nonlinearity. , 2013, Chaos.

[22]  Jian Wang,et al.  Solitary wave propagation and interactions for the Klein–Gordon–Zakharov equations in plasma physics , 2009 .

[23]  Kenji Nakanishi,et al.  Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .

[24]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[25]  Weizhu Bao,et al.  A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime , 2016, J. Comput. Phys..

[26]  C. Kharif,et al.  A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity , 2012, 1207.2246.

[27]  Houria Triki,et al.  Soliton solutions of the Klein-Gordon-Zakharov equations with power law nonlinearity , 2014, Appl. Math. Comput..

[28]  Weizhu Bao,et al.  An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System , 2013, SIAM J. Sci. Comput..

[29]  Tohru Ozawa,et al.  Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions , 1999 .