Stochastic Lot Sizing Problems

In this chapter dynamic lot sizing problems with random demands are discussed. Several approaches to handle uncertainty are presented. Single-item problems as well as multi-item lot sizing problems with limited capacities of a scarce resource are considered. Thereby the focus is on numerically tractable solution approaches.

[1]  Douglas J. Thomas,et al.  Measuring Item Fill-Rate Performance in a Finite Horizon , 2005, Manuf. Serv. Oper. Manag..

[2]  Horst Tempelmeier,et al.  Dynamic capacitated lot-sizing problems: a classification and review of solution approaches , 2010, OR Spectr..

[3]  Thomas L. Magnanti,et al.  Applied Mathematical Programming , 1977 .

[4]  Srinivas Bollapragada,et al.  A Simple Heuristic for Computing Nonstationary (s, S) Policies , 1999, Oper. Res..

[5]  Stefan Helber,et al.  Dynamic capacitated lot sizing with random demand and dynamic safety stocks , 2013, OR Spectr..

[6]  Dennis K. J. Lin,et al.  On the single item fill rate for a finite horizon , 2003, Oper. Res. Lett..

[7]  Brian G. Kingsman,et al.  Production, Manufacturing and Logistics Modelling and computing (R n ,S n ) policies for inventory systems with non-stationary stochastic demand , 2005 .

[8]  Horst Tempelmeier,et al.  Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic , 2009, Comput. Oper. Res..

[9]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[10]  Roberto Rossi,et al.  A Global Chance-Constraint for Stochastic Inventory Systems Under Service Level Constraints , 2008, Constraints.

[11]  Dmitry Krass,et al.  Inventory models with minimal service level constraints , 2001, Eur. J. Oper. Res..

[12]  H. Tempelmeier A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint , 2011 .

[13]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming (Springer Series in Operations Research and Financial Engineering) , 2006 .

[14]  Horst Tempelmeier,et al.  ABC β–a heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint , 2010 .

[15]  C. R. Sox,et al.  Dynamic lot sizing with random demand and non-stationary costs , 1997, Oper. Res. Lett..

[16]  Ronald G. Askin A Procedure for Production Lot Sizing with Probabilistic Dynamic Demand , 1981 .

[17]  Peter L. Jackson,et al.  A review of the stochastic lot scheduling problem 1 This paper is based upon work supported in part , 1999 .

[18]  Horst Tempelmeier,et al.  On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints , 2007, Eur. J. Oper. Res..

[19]  Alan S. Manne,et al.  Programming of Economic Lot Sizes , 1958 .

[20]  Luk N. Van Wassenhove,et al.  A simple heuristic for the multi item single level capacitated lotsizing problem , 1986 .

[21]  Jean B. Lasserre,et al.  Technical Note - The Stochastic Discrete Dynamic Lot Size Problem: An Open-Loop Solution , 1985, Oper. Res..

[22]  Vicente Vargas,et al.  Production , Manufacturing and Logistics An optimal solution for the stochastic version of the Wagner – Whitin dynamic lot-size model , 2009 .

[23]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[24]  Ş. Tarim,et al.  The cost of using stationary inventory policies when demand is non-stationary , 2011 .

[25]  Anand Paul,et al.  Average fill rate and horizon length , 2005, Oper. Res. Lett..

[26]  Yongpei Guan,et al.  On formulations of the stochastic uncapacitated lot-sizing problem , 2006, Oper. Res. Lett..

[27]  Gabriel R. Bitran,et al.  Deterministic Approximations to Stochastic Production Problems , 1984, Oper. Res..

[28]  James H. Bookbinder,et al.  Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints , 1988 .

[29]  Ivo J. B. F. Adan,et al.  The stochastic economic lot scheduling problem: A survey , 2011, Eur. J. Oper. Res..

[30]  Horst Tempelmeier,et al.  Dynamic uncapacitated lot sizing with random demand under a fillrate constraint , 2011, Eur. J. Oper. Res..

[31]  Ş. Tarim,et al.  The stochastic dynamic production/inventory lot-sizing problem with service-level constraints , 2004 .

[32]  S. Karlin,et al.  Mathematical Methods in the Social Sciences , 1962 .

[33]  K. H. Daniel,et al.  Multistage inventory models and techniques , 1965 .