Typing Quantum Superpositions and Measurement

We propose a way to unify two approaches of non-cloning in quantum lambda-calculi. The first approach is to forbid duplicating variables, while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.

[1]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[2]  Pablo Arrighi,et al.  A System F accounting for scalars , 2009, 0903.3741.

[3]  Benoît Valiron,et al.  The Vectorial Lambda-Calculus , 2013, ArXiv.

[4]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[5]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[6]  Pablo Arrighi Linear-algebraic λ-calculus: higher-order, encodings, and confluence , 2006 .

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  Margherita Zorzi,et al.  On quantum lambda calculi: a foundational perspective , 2014, Mathematical Structures in Computer Science.

[9]  Gilles Dowek,et al.  Lineal: A linear-algebraic Lambda-calculus , 2017, Log. Methods Comput. Sci..

[10]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[11]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[12]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[13]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[14]  Gilles Dowek,et al.  Simply Typed Lambda-Calculus Modulo Type Isomorphisms , 2015, ArXiv.

[15]  Benoît Valiron,et al.  The vectorial λ-calculus , 2017, Inf. Comput..

[16]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[17]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[18]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[19]  Lionel Vaux The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..

[20]  Simon Perdrix,et al.  Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus , 2014, Log. Methods Comput. Sci..

[21]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[22]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  Alejandro Díaz-Caro,et al.  Linearity in the Non-deterministic Call-by-Value Setting , 2012, WoLLIC.

[25]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .