The Milky Way, coming into focus: Precision astrometry probes its evolution and its dark matter

[1]  G. Green,et al.  Deep Potential: Recovering the Gravitational Potential from a Snapshot of Phase Space , 2020, The Astrophysical Journal.

[2]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[3]  A. Myers,et al.  Hidden depths in the local Universe: The Stellar Stream Legacy Survey , 2021, Astronomy & Astrophysics.

[4]  N. Yunes,et al.  Mirror neutron stars , 2021, Physical Review D.

[5]  C. Barache,et al.  Gaia Data Release 1 - Catalogue validation , 2017, 1701.00292.

[6]  H. Rix,et al.  Dynamical Model of the Milky Way Using APOGEE and Gaia Data , 2021, 2106.05286.

[7]  C. Conroy,et al.  Stellar Streams in the Galactic Disk: Predicted Lifetimes and Their Utility in Measuring the Galactic Potential , 2021, 2106.02050.

[8]  M. Hayden,et al.  The GALAH Survey: No Chemical Evidence of an Extragalactic Origin for the Nyx Stream , 2021, 2104.08684.

[9]  Stephen R. Taylor,et al.  Bayesian forecasts for dark matter substructure searches with mock pulsar timing data , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  Benjamin D. Johnson,et al.  All-sky dynamical response of the Galactic halo to the Large Magellanic Cloud , 2021, Nature.

[11]  J. Weller,et al.  Constraining ultra-light axions with galaxy cluster number counts , 2021, Journal of Cosmology and Astroparticle Physics.

[12]  Y. Kahn,et al.  Dark matter daily modulation with anisotropic organic crystals , 2021, Physical Review D.

[13]  B. Safdi,et al.  Galactic Potential and Dark Matter Density from Angular Stellar Accelerations. , 2021, Physical review letters.

[14]  Frank C van den Bosch,et al.  The tidal evolution of dark matter substructure – II. The impact of artificial disruption on subhalo mass functions and radial profiles , 2021, Monthly Notices of the Royal Astronomical Society.

[15]  E. Balbinot,et al.  A supra-massive population of stellar-mass black holes in the globular cluster Palomar 5 , 2021, Nature Astronomy.

[16]  R. Essig,et al.  The cosmological evolution of self-interacting dark matter , 2021, 2102.06215.

[17]  G. Perrin,et al.  Improved GRAVITY astrometric accuracy from modeling optical aberrations , 2021, Astronomy & Astrophysics.

[18]  A. Quillen,et al.  A Measurement of the Galactic Plane Mass Density from Binary Pulsar Accelerations , 2021 .

[19]  L. Hui Wave Dark Matter , 2021, Annual Review of Astronomy and Astrophysics.

[20]  T. Treu,et al.  Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies , 2021, 2101.07810.

[21]  T. Quinn,et al.  Quantifying Scatter in Galaxy Formation at the Lowest Masses , 2021, The Astrophysical Journal.

[22]  P. F. de Salas,et al.  Dark matter local density determination: recent observations and future prospects , 2020, Reports on progress in physics. Physical Society.

[23]  Vincent S. H. Lee,et al.  Probing small-scale power spectra with pulsar timing arrays , 2020, Journal of High Energy Physics.

[24]  M. Hilker,et al.  The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛCDM cosmology , 2020, Astronomy & Astrophysics.

[25]  R. Drimmel,et al.  A holistic review of a galactic interaction , 2020, Monthly Notices of the Royal Astronomical Society.

[26]  R. Drimmel,et al.  Measuring the vertical response of the Galactic disc to an infalling satellite , 2020, Monthly Notices of the Royal Astronomical Society.

[27]  Zhao-Yu Li Vertical Phase Mixing across the Galactic Disk , 2020, The Astrophysical Journal.

[28]  T. Yu,et al.  Dependence of dark matter - electron scattering on the galactic dark matter velocity distribution , 2020, Journal of Cosmology and Astroparticle Physics.

[29]  Sergey E. Koposov,et al.  Detection of the LMC-induced sloshing of the Galactic halo , 2020, Monthly Notices of the Royal Astronomical Society.

[30]  Fabrizio Rompineve,et al.  Decay of boson stars with application to glueballs and other real scalars , 2020, Physical Review D.

[31]  R. Wechsler,et al.  Bounds on Velocity-dependent Dark Matter–Proton Scattering from Milky Way Satellite Abundance , 2020, The Astrophysical Journal Letters.

[32]  D. Phillips,et al.  Milky Way Accelerometry via Millisecond Pulsar Timing. , 2020, Physical review letters.

[33]  S. Koushiappas,et al.  Deep learning the astrometric signature of dark matter substructure , 2020, Physical Review D.

[34]  D. Gerdes,et al.  Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. , 2021, Physical review letters.

[35]  A. Green,et al.  Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.

[36]  P. Sikivie Invisible axion search methods , 2020, 2003.02206.

[37]  J. Bovy,et al.  Novel constraints on the particle nature of dark matter from stellar streams , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  J. Bovy,et al.  Evidence of a population of dark subhaloes from Gaia and Pan-STARRS observations of the GD-1 stream , 2021, Monthly Notices of the Royal Astronomical Society.

[39]  A. Mitridate,et al.  Directional dark matter detection in anisotropic Dirac materials , 2019, Physical Review D.

[40]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[41]  Daneng Yang,et al.  Self-Interacting Dark Matter and the Excess of Small-Scale Gravitational Lenses , 2021 .

[42]  J. Bovy A purely acceleration-based measurement of the fundamental Galactic parameters using Gaia EDR3 , 2020, 2012.02169.

[43]  J. Peñarrubia,et al.  Detection of the Milky Way reflex motion due to the Large Magellanic Cloud infall , 2020, Nature Astronomy.

[44]  J. Bovy,et al.  Did Sgr cause the vertical waves in the solar neighbourhood? , 2020, 2010.04165.

[45]  V. Belokurov,et al.  Tango for three: Sagittarius, LMC, and the Milky Way , 2020, Monthly Notices of the Royal Astronomical Society.

[46]  M. Meneghetti,et al.  An excess of small-scale gravitational lenses observed in galaxy clusters , 2020, Science.

[47]  J. Bland-Hawthorn,et al.  Galactic seismology: the evolving ‘phase spiral’ after the Sagittarius dwarf impact , 2020, 2009.02434.

[48]  J. Lesgourgues,et al.  Cannibalism hinders growth: Cannibal Dark Matter and the S8 tension , 2020, Journal of Cosmology and Astroparticle Physics.

[49]  E. Nielsen,et al.  Toward a Direct Measure of the Galactic Acceleration , 2020, The Astrophysical Journal.

[50]  B. Yanny,et al.  Axial Asymmetry Studies in Gaia Data Release 2 Yield the Pattern Speed of the Galactic Bar , 2020, The Astrophysical Journal.

[51]  N. Raj,et al.  Subaru-HSC through a different lens: Microlensing by extended dark matter structures , 2020, 2007.12697.

[52]  C. Prescod-Weinstein,et al.  Relaxation times for Bose-Einstein condensation in axion miniclusters , 2020, 2007.07438.

[53]  Camila A Correa Constraining velocity-dependent self-interacting dark matter with the Milky Way’s dwarf spheroidal galaxies , 2020, 2007.02958.

[54]  L. Widrow,et al.  The Milky Way’s Shell Structure Reveals the Time of a Radial Collision , 2020, The Astrophysical Journal.

[55]  M. Valluri,et al.  Probing the nature of dark matter with accreted globular cluster streams , 2020, 2005.12919.

[56]  H. Ramani,et al.  Observability of dark matter substructure with pulsar timing correlations , 2020, Journal of Cosmology and Astroparticle Physics.

[57]  A. Drlica-Wagner,et al.  SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.

[58]  B. Yanny,et al.  Probing Axial Symmetry Breaking in the Galaxy with Gaia Data Release 2 , 2020, The Astrophysical Journal.

[59]  N. Weiner,et al.  Power of halometry , 2020, 2003.02264.

[60]  N. Raj,et al.  Gravitational microlensing by dark matter in extended structures , 2020, Physical Review D.

[61]  A. Helmi Streams, Substructures, and the Early History of the Milky Way , 2020, Annual Review of Astronomy and Astrophysics.

[62]  N. Weiner,et al.  First Results on Dark Matter Substructure from Astrometric Weak Lensing. , 2020, Physical review letters.

[63]  V. Belokurov,et al.  Equilibrium models of the Milky Way mass are biased high by the LMC , 2020, Monthly Notices of the Royal Astronomical Society.

[64]  M. Raidal,et al.  Implications of Milky Way substructures for the nature of dark matter , 2020, 2001.11013.

[65]  C. Frenk,et al.  The orbital phase space of contracted dark matter haloes , 2020, Monthly Notices of the Royal Astronomical Society.

[66]  T. Yanagida,et al.  Axion Stars Nucleation in Dark Mini-Halos around Primordial Black Holes , 2020, 2001.07476.

[67]  D. Kawata,et al.  The dual origin of the Galactic thick disc and halo from the gas-rich Gaia–Enceladus Sausage merger , 2020, 2001.06009.

[68]  K. Schutz Subhalo mass function and ultralight bosonic dark matter , 2020, 2001.05503.

[69]  M. Boylan-Kolchin,et al.  The Orbital Histories of Magellanic Satellites Using Gaia DR2 Proper Motions , 2020, The Astrophysical Journal.

[70]  B. Yanny,et al.  Applying Noether’s Theorem to Matter in the Milky Way: Evidence for External Perturbations and Non-steady-state Effects from Gaia Data Release 2 , 2020, The Astrophysical Journal.

[71]  A. Goodman,et al.  A compendium of distances to molecular clouds in the Star Formation Handbook , 2020, Astronomy & Astrophysics.

[72]  Y. Kahn,et al.  Dark matter-electron scattering from aromatic organic targets , 2019, Physical Review D.

[73]  M. Ishigaki,et al.  The mass of our Milky Way , 2019, Science China Physics, Mechanics & Astronomy.

[74]  S. White,et al.  Universal structure of dark matter haloes over a mass range of 20 orders of magnitude , 2019, Nature.

[75]  D. Blas,et al.  Secular effects of ultralight dark matter on binary pulsars , 2019, Physical Review D.

[76]  C. Frenk,et al.  The dark matter component of the Gaia radially anisotropic substructure , 2019, Journal of Cosmology and Astroparticle Physics.

[77]  L. Mayer,et al.  Improved constraints from ultra-faint dwarf galaxies on primordial black holes as dark matter , 2019, Monthly Notices of the Royal Astronomical Society.

[78]  T. Jeltema,et al.  Updated constraints on asteroid-mass primordial black holes as dark matter , 2019, Physical Review D.

[79]  V. Belokurov,et al.  Velocity substructure from Gaia and direct searches for dark matter , 2019, Physical Review D.

[80]  J. Shelton,et al.  Leak-in dark matter , 2019, Journal of High Energy Physics.

[81]  D. Curtin,et al.  Signatures of mirror stars , 2019, Journal of High Energy Physics.

[82]  D. Curtin,et al.  How to discover Mirror Stars , 2019, Physics Letters B.

[83]  C. Frenk,et al.  The little things matter: relating the abundance of ultrafaint satellites to the hosts’ assembly history , 2019, Monthly Notices of the Royal Astronomical Society.

[84]  G. Krnjaic,et al.  Implications of BBN bounds for cosmic ray upscattered dark matter , 2019, 1908.00007.

[85]  V. Belokurov,et al.  Limit on the LMC mass from a census of its satellites , 2019, Monthly Notices of the Royal Astronomical Society.

[86]  M. Freytsis,et al.  Chasing Accreted Structures within Gaia DR2 Using Deep Learning , 2019, The Astrophysical Journal.

[87]  P. Hopkins,et al.  Evidence for a vast prograde stellar stream in the solar vicinity , 2019, Nature Astronomy.

[88]  P. Hopkins,et al.  Cataloging accreted stars withinGaiaDR2 using deep learning , 2019, Astronomy & Astrophysics.

[89]  L. Randall,et al.  Testing ΛCDM with Dwarf Galaxy Morphology , 2019, The Astrophysical Journal.

[90]  Jacob M. Taylor,et al.  Proposal for gravitational direct detection of dark matter , 2019, 1903.00492.

[91]  M. Kaplinghat,et al.  Accelerated core collapse in tidally stripped self-interacting dark matter halos , 2019, Physical Review D.

[92]  L. Senatore,et al.  An analytic implementation of the IR-resummation for the BAO peak , 2018, Journal of Cosmology and Astroparticle Physics.

[93]  Yong-chao Zhang,et al.  Dark matter clusters and time correlations in direct detection experiments , 2018, Journal of High Energy Physics.

[94]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[95]  R. Catena,et al.  Atomic responses to general dark matter-electron interactions , 2019, 1912.08204.

[96]  N. Martin,et al.  Phase-space Correlation in Stellar Streams of the Milky Way Halo: The Clash of Kshir and GD-1 , 2019, The Astrophysical Journal.

[97]  N. Palanque-Delabrouille,et al.  Matter power spectrum: from Ly α forest to CMB scales , 2019, Monthly Notices of the Royal Astronomical Society.

[98]  A. Peter,et al.  The highest-speed local dark matter particles come from the Large Magellanic Cloud , 2019, Journal of Cosmology and Astroparticle Physics.

[99]  Frank C van den Bosch,et al.  The tidal evolution of dark matter substructure – I. subhalo density profiles , 2019, Monthly Notices of the Royal Astronomical Society.

[100]  A. Ibarra,et al.  Impact of substructure on local dark matter searches , 2019, Journal of Cosmology and Astroparticle Physics.

[101]  Tongyan Lin Dark matter models and direct detection , 2019, Proceedings of Theoretical Advanced Study Institute Summer School 2018 "Theory in an Era of Data" — PoS(TASI2018).

[102]  Sergey E. Koposov,et al.  The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science , 2019, Monthly Notices of the Royal Astronomical Society.

[103]  C. Hirata,et al.  Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates , 2019, Journal of Cosmology and Astroparticle Physics.

[104]  D. An Asymmetric Mean Metallicity Distribution of the Milky Way’s Disk , 2019, The Astrophysical Journal.

[105]  J. Binney Modelling our galaxy , 2019, Proceedings of the International Astronomical Union.

[106]  N. Evans The early merger that made the galaxy’s stellar halo , 2019, Proceedings of the International Astronomical Union.

[107]  N. Palanque-Delabrouille,et al.  Matter power spectrum: from Ly α forest to CMB scales , 2019, Monthly Notices of the Royal Astronomical Society.

[108]  Risa H. Wechsler,et al.  Constraints on Dark Matter Microphysics from the Milky Way Satellite Population , 2019, The Astrophysical Journal.

[109]  Durham,et al.  Diverse dark matter density at sub-kiloparsec scales in Milky Way satellites: Implications for the nature of dark matter , 2019, Physical Review D.

[110]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[111]  Cambridge,et al.  Evidence for two early accretion events that built the Milky Way stellar halo , 2019, Monthly Notices of the Royal Astronomical Society.

[112]  K. Berggren,et al.  Detecting Sub-GeV Dark Matter with Superconducting Nanowires. , 2019, Physical review letters.

[113]  A. Miglio,et al.  The Fall of a Giant. Chemical evolution of Enceladus, alias the Gaia Sausage , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[114]  M. Hayden,et al.  The GALAH survey and Gaia DR2: Linking ridges, arches, and vertical waves in the kinematics of the Milky Way , 2019, Monthly Notices of the Royal Astronomical Society.

[115]  P. Bianchini,et al.  Identification of the long stellar stream of the prototypical massive globular cluster ω Centauri , 2019, Nature Astronomy.

[116]  Tongyan Lin,et al.  Making dark matter out of light: Freeze-in from plasma effects , 2019, Physical Review D.

[117]  P. T. de Zeeuw,et al.  The tilt of the velocity ellipsoid in the Milky Way with Gaia DR2 , 2019, Astronomy & Astrophysics.

[118]  Nathan Golovich,et al.  Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope , 2019, 1902.01055.

[119]  Chao Liu,et al.  An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids , 2019, Nature Astronomy.

[120]  B. Cabrera,et al.  Diamond detectors for direct detection of sub-GeV dark matter , 2019, Physical Review D.

[121]  N. W. Evans,et al.  Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage , 2019, Physical Review D.

[122]  J. Simon,et al.  The Faintest Dwarf Galaxies , 2019, Annual Review of Astronomy and Astrophysics.

[123]  J. A. Dror,et al.  Pulsar timing probes of primordial black holes and subhalos , 2019, Physical Review D.

[124]  Sergey E. Koposov,et al.  Piercing the Milky Way: an all-sky view of the Orphan Stream , 2018, Monthly Notices of the Royal Astronomical Society.

[125]  Sergey E. Koposov,et al.  The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream , 2018, Monthly Notices of the Royal Astronomical Society.

[126]  N. Langellier,et al.  Probing Dark Matter Using Precision Measurements of Stellar Accelerations. , 2018, Physical review letters.

[127]  H. Silverwood,et al.  Stellar accelerations and the galactic gravitational field , 2018, Publications of the Astronomical Society of Australia.

[128]  C. Frenk,et al.  On the correlation between the local dark matter and stellar velocities , 2018, Journal of Cosmology and Astroparticle Physics.

[129]  Adrian M. Price-Whelan,et al.  The Spur and the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo , 2018, The Astrophysical Journal.

[130]  K. Holley-Bockelmann,et al.  Dancing in the Dark: Uncertainty in Ultrafaint Dwarf Galaxy Predictions from Cosmological Simulations , 2018, The Astrophysical Journal.

[131]  P. Hopkins,et al.  Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way , 2018, The Astrophysical Journal.

[132]  L. Moustakas,et al.  The Effect of Dark Matter–Dark Radiation Interactions on Halo Abundance: A Press–Schechter Approach , 2018, The Astrophysical Journal.

[133]  H. Rix,et al.  The Circular Velocity Curve of the Milky Way from 5 to 25 kpc , 2018, The Astrophysical Journal.

[134]  J. Niemeyer,et al.  Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. , 2018, Physical review letters.

[135]  R. Poleski,et al.  Rotation Curve of the Milky Way from Classical Cepheids , 2018, The Astrophysical Journal.

[136]  J. Bovy,et al.  Effects of baryonic and dark matter substructure on the Pal 5 stream , 2018, Monthly Notices of the Royal Astronomical Society.

[137]  M. Hayden,et al.  The GALAH survey and Gaia DR2: dissecting the stellar disc’s phase space by age, action, chemistry, and location , 2018, Monthly Notices of the Royal Astronomical Society.

[138]  Yi-Ming Zhong,et al.  Constraining Dissipative Dark Matter Self-Interactions. , 2018, Physical review letters.

[139]  JiJi Fan,et al.  Using Gaia DR2 to constrain local dark matter density and thin dark disk , 2018, Journal of Cosmology and Astroparticle Physics.

[140]  V. Belokurov,et al.  Inferred Evidence for Dark Matter Kinematic Substructure with SDSS–Gaia , 2018, The Astrophysical Journal.

[141]  Igor Soszyński,et al.  A three-dimensional map of the Milky Way using classical Cepheid variable stars , 2018, Science.

[142]  A. Helmi,et al.  Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble , 2018, Astronomy & Astrophysics.

[143]  R. Lupton,et al.  Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.

[144]  J. Alves,et al.  Extended stellar systems in the solar neighborhood-II. Discovery of a nearby 120° stellar stream in Gaia DR2 , 2019 .

[145]  A. Peter,et al.  Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter Predictions. , 2018, Physical review letters.

[146]  J. Bovy,et al.  Vertical waves in the solar neighbourhood inGaiaDR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[147]  A. Katz,et al.  Femtolensing by dark matter revisited , 2018, Journal of Cosmology and Astroparticle Physics.

[148]  J. Binney,et al.  The origin of the Gaia phase-plane spiral , 2018, Monthly Notices of the Royal Astronomical Society.

[149]  V. Belokurov,et al.  Dark matter hurricane: Measuring the S1 stream with dark matter detectors , 2018, Physical Review D.

[150]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[151]  Tom Melia,et al.  Detecting dark blobs , 2018, Physical Review D.

[152]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[153]  R. Poleski,et al.  A New 3-D Picture of the Milky Way with Classical Cepheids , 2018, 1806.10653.

[154]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[155]  L. Widrow,et al.  Bending waves in the Milky Way’s disc from halo substructure , 2018, Monthly Notices of the Royal Astronomical Society.

[156]  H. K. Lou,et al.  Astrophysical signatures of asymmetric dark matter bound states , 2018, Physical Review D.

[157]  J. Navarro,et al.  The Missing Satellites of the Magellanic Clouds? Gaia Proper Motions of the Recently Discovered Ultra-faint Galaxies , 2018, The Astrophysical Journal.

[158]  Sergey E. Koposov,et al.  The Sausage Globular Clusters , 2018, The Astrophysical Journal.

[159]  A. Helmi,et al.  One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2 , 2018, The Astrophysical Journal.

[160]  R. Ibata,et al.  STREAMFINDER - I. A new algorithm for detecting stellar streams , 2018, 1804.11338.

[161]  A. Helmi,et al.  A dynamically young and perturbed Milky Way disk , 2018, Nature.

[162]  I. Tkachev,et al.  Gravitational Bose-Einstein Condensation in the Kinetic Regime. , 2018, Physical review letters.

[163]  Nilanjan Banik,et al.  Probing the nature of dark matter particles with stellar streams , 2018, Journal of Cosmology and Astroparticle Physics.

[164]  N. Weiner,et al.  Halometry from astrometry , 2018, Journal of Cosmology and Astroparticle Physics.

[165]  M. Schmaltz,et al.  Cannibal dark matter and large scale structure , 2018, Physical Review D.

[166]  K. Irwin,et al.  Fundamental Limits of Electromagnetic Axion and Hidden-Photon Dark Matter Searches: Part I - The Quantum Limit , 2018 .

[167]  H. K. Lou,et al.  Early Universe synthesis of asymmetric dark matter nuggets , 2018 .

[168]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[169]  F. V. D. Bosch,et al.  Dark Matter Substructure in Numerical Simulations: A Tale of Discreteness Noise, Runaway Instabilities, and Artificial Disruption , 2018, 1801.05427.

[170]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[171]  R. Nichol,et al.  Stellar Streams Discovered in the Dark Energy Survey , 2018, The Astrophysical Journal.

[172]  M. Buckley,et al.  Gravitational probes of dark matter physics , 2017, Physics Reports.

[173]  G. Krnjaic Freezing in, heating up, and freezing out: predictive nonthermal dark matter and low-mass direct detection , 2017, Journal of High Energy Physics.

[174]  O. Hahn,et al.  Disruption of Dark Matter Substructure: Fact or Fiction? , 2017, 1711.05276.

[175]  B. Safdi,et al.  Constraining a Thin Dark Matter Disk with Gaia. , 2017, Physical review letters.

[176]  Y. Jing,et al.  Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs , 2017, 1710.05032.

[177]  K. Johnston,et al.  The influence of Sagittarius and the Large Magellanic Cloud on the stellar disc of the Milky Way Galaxy , 2017, Monthly Notices of the Royal Astronomical Society.

[178]  M. Kaplinghat,et al.  Signatures of self-interacting dark matter in the matter power spectrum and the CMB , 2017, Physics Letters B.

[179]  G. Bertone,et al.  The Local Dark Matter Density from SDSS-SEGUE G-dwarfs , 2017, 1708.07836.

[180]  J. J. González-Vidal,et al.  Gaia Data Release 2 – The astrometric solution , 2018 .

[181]  A. Grushin,et al.  Detection of sub-MeV dark matter with three-dimensional Dirac materials , 2017, 1708.08929.

[182]  UK.,et al.  The total satellite population of the Milky Way. , 2017, 1708.04247.

[183]  M. Lisanti,et al.  The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter , 2017, 1708.03635.

[184]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[185]  H. K. Lou,et al.  Nuclear structure of bound states of asymmetric dark matter , 2017, 1707.02313.

[186]  B. Yanny,et al.  Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk , 2017, 1706.01900.

[187]  Alex Drlica-Wagner,et al.  Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD. , 2017, Physical review letters.

[188]  JiJi Fan,et al.  Cooling in a dissipative dark sector , 2017, 1705.10341.

[189]  S. Tulin,et al.  Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.

[190]  M. Viel,et al.  “Non-cold” dark matter at small scales: a general approach , 2017, 1704.07838.

[191]  A. Green Astrophysical uncertainties on the local dark matter distribution and direct detection experiments , 2017, 1703.10102.

[192]  A. Price-Whelan,et al.  Gaps and length asymmetry in the stellar stream Palomar 5 as effects of Galactic bar rotation , 2017, 1703.04627.

[193]  Durham,et al.  Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations , 2017, 1702.04348.

[194]  D. Green,et al.  The cosmology of sub-MeV dark matter , 2017, 1701.08750.

[195]  L. Senatore,et al.  IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence , 2017, 1701.07012.

[196]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[197]  G. Besla,et al.  Orbits of massive satellite galaxies – I. A close look at the Large Magellanic Cloud and a new orbital history for M33 , 2016, 1609.04823.

[198]  Garching,et al.  Shaken and stirred : the Milky Way's dark substructures. , 2016, 1609.01718.

[199]  Sergey E. Koposov,et al.  A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique , 2016, Monthly Notices of the Royal Astronomical Society.

[200]  S. Dodelson,et al.  Galactoseismology and the local density of dark matter , 2016, 1608.03338.

[201]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[202]  C. Tully,et al.  Directional detection of dark matter with two-dimensional targets , 2016, 1606.08849.

[203]  C. Frenk,et al.  Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. , 2016, 1604.07409.

[204]  V. Belokurov,et al.  The upper bound on the lowest mass halo , 2016, 1612.07834.

[205]  N. Evans,et al.  Reflection symmetries of isolated self-consistent stellar systems , 2016, 1610.01701.

[206]  C. O’Hare,et al.  Reconstructing the three-dimensional local dark matter velocity distribution , 2016, 1609.08630.

[207]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[208]  J. Bovy,et al.  THE SHAPE OF THE INNER MILKY WAY HALO FROM OBSERVATIONS OF THE PAL 5 AND GD–1 STELLAR STREAMS , 2016, 1609.01298.

[209]  J. Bovy,et al.  The number and size of subhalo-induced gaps in stellar streams , 2016, 1606.04946.

[210]  S. White,et al.  Gaps in globular cluster streams: giant molecular clouds can cause them too , 2016, 1606.02715.

[211]  Timothy D. Brandt CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.

[212]  H. Rix,et al.  MAPPING THE MONOCEROS RING IN 3D WITH PAN-STARRS1 , 2016, 1604.07501.

[213]  Bingqiu Chen,et al.  The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution , 2016, 1604.01216.

[214]  L. Randall,et al.  UPDATED KINEMATIC CONSTRAINTS ON A DARK DISK , 2016, 1604.01407.

[215]  Jeffrey L. Carlin,et al.  Stellar Streams and Clouds in the Galactic Halo , 2016, 1603.08936.

[216]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[217]  S. Vahsen,et al.  A review of the discovery reach of directional Dark Matter detection , 2016, 1602.03781.

[218]  G. Bertone,et al.  UvA-DARE ( Digital Academic Repository ) Simulated Milky Way analogues : implications for dark matter direct searches , 2016 .

[219]  P. Graham,et al.  Dark Matter Direct Detection with Accelerometers , 2015, 1512.06165.

[220]  D. Hogg,et al.  Chaotic dispersal of tidal debris , 2015, 1507.08662.

[221]  Y. Hochberg,et al.  Superconducting Detectors for Superlight Dark Matter. , 2015, Physical review letters.

[222]  G. Stinson,et al.  NIHAO project II: Halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations , 2015, 1503.04814.

[223]  Laurence Perreault Levasseur,et al.  Measuring the power spectrum of dark matter substructure using strong gravitational lensing , 2014, 1403.2720.

[224]  J. Carlin,et al.  Tidal streams in the local group and beyond : observations and implications , 2016 .

[225]  Y. Hochberg,et al.  Detecting superlight dark matter with Fermi-degenerate materials , 2015, 1512.04533.

[226]  G. Besla The Orbits and Total Mass of the Magellanic Clouds , 2015, 1511.03346.

[227]  L. Hernquist,et al.  EXCITATION OF COUPLED STELLAR MOTIONS IN THE GALACTIC DISK BY ORBITING SATELLITES , 2015, 1511.01503.

[228]  J. Binney,et al.  The distribution function of the Galaxy's dark halo , 2015, 1509.06877.

[229]  D. Hollenbach,et al.  STARS, GAS, AND DARK MATTER IN THE SOLAR NEIGHBORHOOD , 2015, 1509.05334.

[230]  M. Fernández-Serra,et al.  Direct detection of sub-GeV dark matter with semiconductor targets , 2015, 1509.01598.

[231]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[232]  V. Belokurov,et al.  Properties of dark subhaloes from gaps in tidal streams , 2015, 1507.05625.

[233]  H. Rix,et al.  THE RADIAL PROFILE AND FLATTENING OF THE MILKY WAY’S STELLAR HALO TO 80 kpc FROM THE SEGUE K-GIANT SURVEY , 2015, 1506.06144.

[234]  A. Peter,et al.  Identifying the theory of dark matter with direct detection , 2015, 1506.04454.

[235]  J. March-Russell,et al.  Big Bang synthesis of nuclear dark matter , 2015, Journal of High Energy Physics.

[236]  Y. Hoffman,et al.  Filaments from the galaxy distribution and from the velocity field in the local universe , 2015, 1505.07454.

[237]  J. March-Russell,et al.  Signatures of large composite Dark Matter states , 2015, 1504.05419.

[238]  S. More,et al.  THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.

[239]  A. Anderson,et al.  Halo-independent direct detection analyses without mass assumptions , 2015, 1504.03333.

[240]  A. Price-Whelan,et al.  A reinterpretation of the Triangulum–Andromeda stellar clouds: a population of halo stars kicked out of the Galactic disc , 2015, 1503.08780.

[241]  M. Steinmetz,et al.  Planes of satellite galaxies and the cosmic web , 2015, 1503.05915.

[242]  B. Yanny,et al.  EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.

[243]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.

[244]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[245]  A. Udalski,et al.  OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment , 2015, 1504.05966.

[246]  Chao Liu,et al.  RINGS AND RADIAL WAVES IN THE DISK OF THE MILKY WAY , 2015, 1503.00257.

[247]  D. Hogg,et al.  GLOBULAR CLUSTER STREAMS AS GALACTIC HIGH-PRECISION SCALES—THE POSTER CHILD PALOMAR 5 , 2015, Proceedings of the International Astronomical Union.

[248]  V. Belokurov,et al.  Dipping our toes in the water: first models of GD-1 as a stream , 2015, 1502.00484.

[249]  A. Guth,et al.  Do dark matter axions form a condensate with long-range correlation? , 2014, 1412.5930.

[250]  Liverpool John Moores University,et al.  Bent by baryons: the low-mass galaxy-halo relation , 2014, 1404.3724.

[251]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[252]  Jason L. Sanders,et al.  Stream-Orbit Misalignment , 2015 .

[253]  Yue Zhang,et al.  Yukawa bound states of a large number of fermions , 2014, 1411.1772.

[254]  B. Willman,et al.  TOO MANY, TOO FEW, OR JUST RIGHT? THE PREDICTED NUMBER AND DISTRIBUTION OF MILKY WAY DWARF GALAXIES , 2014, 1407.4470.

[255]  Yue Zhang,et al.  Stable bound states of asymmetric dark matter , 2014, 1407.4121.

[256]  Nikhil Anand,et al.  Weakly interacting massive particle-nucleus elastic scattering response , 2014 .

[257]  D. Hogg,et al.  MILKY WAY MASS AND POTENTIAL RECOVERY USING TIDAL STREAMS IN A REALISTIC HALO , 2014, 1406.6063.

[258]  C. Allen,et al.  THE END OF THE MACHO ERA, REVISITED: NEW LIMITS ON MACHO MASSES FROM HALO WIDE BINARIES , 2014, 1406.5169.

[259]  V. Belokurov,et al.  `Skinny Milky Way please', says Sagittarius , 2014, 1406.2243.

[260]  D. Hogg,et al.  INFERRING THE GRAVITATIONAL POTENTIAL OF THE MILKY WAY WITH A FEW PRECISELY MEASURED STARS , 2014, 1405.6721.

[261]  David W. Hogg,et al.  ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL , 2014, 1404.6534.

[262]  J. Read The local dark matter density , 2014, 1404.1938.

[263]  A. Helmi,et al.  Galactic kinematics and dynamics from radial velocity experiment stars , 2014 .

[264]  K. L. J. Rygl,et al.  TRIGONOMETRIC PARALLAXES OF HIGH MASS STAR FORMING REGIONS: THE STRUCTURE AND KINEMATICS OF THE MILKY WAY , 2014, 1401.5377.

[265]  J. Bovy DYNAMICAL MODELING OF TIDAL STREAMS , 2014, 1401.2985.

[266]  D. Thompson,et al.  FERMI LARGE AREA TELESCOPE DETECTION OF GRAVITATIONAL LENS DELAYED γ-RAY FLARES FROM BLAZAR B0218+357 , 2014, 1401.0548.

[267]  Kris Sigurdson,et al.  Constraints on large-scale dark acoustic oscillations from cosmology , 2013, 1310.3278.

[268]  A. Peter,et al.  Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments. , 2013, Physical review letters.

[269]  JiJi Fan,et al.  Direct and indirect detection of dissipative dark matter , 2013, 1312.1336.

[270]  Devin Powell Astrometry: Europe's star power , 2013, Nature.

[271]  The Ligo Scientific Collaboration Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, 1310.0383.

[272]  B. Yanny,et al.  THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH–SOUTH ASYMMETRIC , 2013, 1309.2300.

[273]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[274]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[275]  N. Kallivayalil,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. II. THE LARGE MAGELLANIC CLOUD ROTATION FIELD IN THREE DIMENSIONS , 2013, 1305.4641.

[276]  J. Binney,et al.  Stream–orbit misalignment – II. A new algorithm to constrain the Galactic potential , 2013, 1305.1937.

[277]  J. Binney,et al.  Stream–orbit misalignment – I. The dangers of orbit-fitting , 2013, 1305.1935.

[278]  G. Fuller,et al.  Dark Matter Studies Entrain Nuclear Physics , 2013, 1303.4758.

[279]  L. Randall,et al.  Dark-disk universe. , 2013, Physical review letters.

[280]  JiJi Fan,et al.  Double-Disk Dark Matter , 2013, 1303.1521.

[281]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[282]  B. Gibson,et al.  The Wobbly Galaxy : kinematics north and south with RAVE red-clump giants , 2013, 1302.2468.

[283]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[284]  R. Wechsler,et al.  HALO-TO-HALO SIMILARITY AND SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER , 2012, 1210.2721.

[285]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[286]  D. Hooper,et al.  A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM , 2012, 1209.5394.

[287]  T. Beers,et al.  Vertical density waves in the Milky Way disc induced by the Sagittarius dwarf galaxy , 2012, 1207.3083.

[288]  S. Tremaine,et al.  Gravitational collapse in one dimension , 2012, 1206.0299.

[289]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[290]  P. Salucci,et al.  The Local Dark Matter Density , 2012, 1212.3670.

[291]  N. Lubbers,et al.  Model Independent Direct Detection Analyses , 2012, 1211.2818.

[292]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[293]  J. Binney Actions for axisymmetric potentials , 2012, 1207.4910.

[294]  L. Senatore,et al.  The effective field theory of cosmological large scale structures , 2012, 1206.2926.

[295]  B. Yanny,et al.  GALACTOSEISMOLOGY: DISCOVERY OF VERTICAL WAVES IN THE GALACTIC DISK , 2012, 1203.6861.

[296]  A. Zentner,et al.  Dark Matter Direct Search Rates in Simulations of the Milky Way and Sagittarius Stream , 2012, 1203.6617.

[297]  A. Peter,et al.  Probing the Local Velocity Distribution of WIMP Dark Matter with Directional Detectors , 2012, 1202.5035.

[298]  D. Spergel,et al.  Direct Detection of Dark Matter Debris Flows , 2012, 1202.0007.

[299]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[300]  R. Beaton,et al.  THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES , 2011, 1112.1067.

[301]  A. Green Astrophysical uncertainties on direct detection experiments , 2011, 1112.0524.

[302]  A. Robin,et al.  Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.

[303]  R. Carlberg,et al.  DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS , 2011, 1109.6022.

[304]  R. Essig,et al.  Direct Detection of Sub-GeV Dark Matter , 2011, 1108.5383.

[305]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[306]  Jean-Paul Kneib,et al.  Cluster lenses , 2012, 1202.0185.

[307]  R. Smith,et al.  Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.

[308]  E. Tollerud,et al.  The Sagittarius impact as an architect of spirality and outer rings in the Milky Way , 2011, Nature.

[309]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[310]  J. Mel'endez,et al.  A FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc , 2011, 1106.1914.

[311]  B. O’Shea,et al.  Signatures of minor mergers in Milky Way-like disc kinematics: Ringing revisited , 2011, 1105.4231.

[312]  D. Spergel,et al.  Dark Matter Debris Flows in the Milky Way , 2011, 1105.4166.

[313]  C. Jog,et al.  PROGRESSIVELY MORE PROLATE DARK MATTER HALO IN THE OUTER GALAXY AS TRACED BY FLARING H i GAS , 2011, 1103.5821.

[314]  K. Zurek,et al.  Prospects for Detecting Dark Matter Halo Substructure with Pulsar Timing , 2011, 1101.5487.

[315]  A. Loeb,et al.  Cores in dwarf galaxies from dark matter with a Yukawa potential. , 2010, Physical review letters.

[316]  P. Fox,et al.  Integrating out astrophysical uncertainties , 2010, 1011.1915.

[317]  D. Boyanovsky,et al.  Small scale aspects of warm dark matter : power spectra and acoustic oscillations. , 2010, 1008.0992.

[318]  D. Hogg,et al.  CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES , 2010, 1012.2884.

[319]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[320]  M. Kuhlen,et al.  The Origin of Dark Matter Halo Profiles , 2010, 1010.2539.

[321]  JiJi Fan,et al.  Non-relativistic effective theory of dark matter direct detection , 2010, 1008.1591.

[322]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[323]  S. Majewski,et al.  THE SAGITTARIUS DWARF GALAXY: A MODEL FOR EVOLUTION IN A TRIAXIAL MILKY WAY HALO , 2010, 1003.1132.

[324]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[325]  D. Huterer,et al.  Weak lensing, dark matter and dark energy , 2010, 1001.1758.

[326]  Benjamin A. Willett,et al.  THE ORBIT OF THE ORPHAN STREAM , 2010, 1001.0576.

[327]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[328]  A. Peter Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments , 2009, 0910.4765.

[329]  G. Kribs,et al.  Quirky composite dark matter , 2009, 0909.2034.

[330]  R. Teyssier,et al.  Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons , 2009, 0909.2028.

[331]  E. Zackrisson,et al.  Gravitational Lensing as a Probe of Cold Dark Matter Subhalos , 2009, 0905.4075.

[332]  P. Schuster,et al.  Composite inelastic dark matter , 2009, 0903.3945.

[333]  J. Stadel,et al.  Dark matter direct detection with non-Maxwellian velocity structure , 2009, 0912.2358.

[334]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[335]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[336]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[337]  S. Mieske,et al.  The velocity dispersion and mass-to-light ratio of the remote halo globular cluster NGC 2419 , 2009, 0904.3329.

[338]  Iain Murray,et al.  DYNAMICAL INFERENCE FROM A KINEMATIC SNAPSHOT: THE FORCE LAW IN THE SOLAR SYSTEM , 2009, 0903.5308.

[339]  A. Peter Dark matter in the Solar System. I. The distribution function of WIMPs at the Earth from solar capture , 2009, 0902.1344.

[340]  A. Peter Dark matter in the Solar System. III. The distribution function of WIMPs at the Earth from gravitational capture , 2009, 0902.1348.

[341]  Ulrich Bastian,et al.  The Hipparcos catalogue , 2009 .

[342]  Durham,et al.  Phase-space structure in the local dark matter distribution and its signature in direct detection experiments , 2008, 0812.0362.

[343]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[344]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[345]  L. Amendola,et al.  Mapping the galactic gravitational potential with peculiar acceleration , 2008, 0807.3237.

[346]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[347]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[348]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[349]  D. Hooper,et al.  Strategies for Determining the Nature of Dark Matter , 2008, 0802.0702.

[350]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[351]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[352]  S. Gardner Possibility of observing dark matter via the gyromagnetic Faraday effect. , 2006, Physical review letters.

[353]  Puragra Guhathakurta,et al.  M31 Transverse Velocity and Local Group Mass from Satellite Kinematics , 2007, 0709.3747.

[354]  J. Kerp,et al.  Dark matter in the Milky Way II. The HI gas distribution as a tracer of the gravitational potential , 2007, 0704.3925.

[355]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[356]  A. Cooray,et al.  Searching for Primordial Black Hole Dark Matter with Pulsar Timing Arrays , 2007, astro-ph/0702586.

[357]  N. Katz,et al.  The dynamics of tidal tails from massive satellites , 2007, astro-ph/0702353.

[358]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[359]  Mehran Kardar,et al.  Statistical physics of particles , 2007 .

[360]  Rodrigo Ibata,et al.  Draco, a flawless dwarf galaxy★ , 2006, astro-ph/0612263.

[361]  Juntai Shen,et al.  Galactic warps induced by cosmic infall , 2006, astro-ph/0604529.

[362]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[363]  L. Blitz,et al.  The Vertical Structure of the Outer Milky Way H I Disk , 2006, astro-ph/0601697.

[364]  L. Blitz,et al.  A Magellanic Origin for the Warp of the Galaxy , 2006, astro-ph/0601694.

[365]  J. Vergados On the Direct Detection of Dark Matter , 2006, hep-ph/0601064.

[366]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[367]  M. Khlopov Composite dark matter from 4th generation , 2005, astro-ph/0511796.

[368]  A. Drake,et al.  The Proper Motion of the Large Magellanic Cloud Using HST , 2005, astro-ph/0508457.

[369]  J. Bullock,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005, astro-ph/0506467.

[370]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[371]  J. Lesgourgues,et al.  Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.

[372]  V. Springel,et al.  Dwarf galaxies in voids: suppressing star formation with photoheating , 2005, astro-ph/0501304.

[373]  Stuart P. D. Gill,et al.  Mapping substructures in dark matter haloes , 2004, astro-ph/0407418.

[374]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[375]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[376]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[377]  R. Gaitskell DIRECT DETECTION OF DARK MAT TER , 2004 .

[378]  G. Gilmore,et al.  Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles , 2004, astro-ph/0409565.

[379]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[380]  S. Majewski,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. III. Constraints on the Flattening of the Galactic Halo , 2004, astro-ph/0407565.

[381]  R. Marel,et al.  The Large Magellanic Cloud: Structure and Kinematics , 2004, astro-ph/0404192.

[382]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[383]  Andrew Gould,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 7/15/03 THE END OF THE MACHO ERA: LIMITS ON HALO DARK MATTER FROM STELLAR HALO WIDE BINARIES , 2003 .

[384]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[385]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[386]  A. Helmi Is the dark halo of our Galaxy spherical , 2003, astro-ph/0309579.

[387]  P. Chavanis Statistical Mechanics of Violent Relaxation in Stellar Systems , 2002, astro-ph/0212205.

[388]  Puragra Guhathakurta,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. I. STIS Spectroscopy and WFPC2 Photometry , 2002, astro-ph/0209314.

[389]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[390]  J. Binney,et al.  Radial mixing in galactic discs , 2002, astro-ph/0203510.

[391]  S. Shapiro,et al.  Gravothermal collapse of self-interacting dark matter halos and the origin of massive black holes. , 2001, Physical review letters.

[392]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[393]  M. Irwin,et al.  Uncovering cold dark matter halo substructure with tidal streams , 2001, astro-ph/0110690.

[394]  S. Shapiro,et al.  Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe , 2001, astro-ph/0110561.

[395]  S. Dodelson,et al.  Cosmic Microwave Background Anisotropies , 2001, astro-ph/0110414.

[396]  C. Kochanek,et al.  Direct Detection of Cold Dark Matter Substructure , 2001, astro-ph/0111456.

[397]  D. Spergel,et al.  How Lumpy Is the Milky Way’s Dark Matter Halo? , 2001, astro-ph/0111196.

[398]  N. S. F. Center,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001, astro-ph/0105539.

[399]  R. Fux Order and Chaos in the Local Disc Stellar Kinematics Induced by the Galactic Bar , 2001, astro-ph/0105398.

[400]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[401]  E. K. Grebel,et al.  Detection of Massive Tidal Tails around the Globular Cluster Palomar 5 with Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0012311.

[402]  A. Drake,et al.  MACHO Project Limits on Black Hole Dark Matter in the 1-30 M☉ Range , 2000 .

[403]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[404]  C. Alard Flaring and warping of the Milky Way disk: not only in the gas , 2000, astro-ph/0007013.

[405]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[406]  R. Davé,et al.  Self-Interacting Dark Matter , 2000, astro-ph/0006344.

[407]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[408]  Michael R. Merrifield,et al.  Two measures of the shape of the dark halo of the Milky Way , 2000 .

[409]  Toshio Tsuchiya,et al.  Time Evolution of Galactic Warps in Prolate Halos , 1999, astro-ph/9910030.

[410]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[411]  R. Fux Order and chaos in the local disc stellar kinematics induced by the Galactic bar , 2000 .

[412]  J. Kneib,et al.  Gravitational Lensing by Clusters of Galaxies , 1999, astro-ph/9905009.

[413]  G. Lake,et al.  Cold collapse and the core catastrophe , 1999, astro-ph/9903164.

[414]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[415]  D. Spergel,et al.  Tidal Streams as Probes of the Galactic Potential , 1998, astro-ph/9807243.

[416]  M. Steinmetz,et al.  How Universal Are the Density Profiles of Dark Halos? , 1998, astro-ph/9803117.

[417]  J. Dubinski,et al.  Constraining Dark Halo Potentials with Tidal Tails , 1999, astro-ph/9902217.

[418]  M. Rauch THE LYMAN ALPHA FOREST IN THE SPECTRA OF QUASISTELLAR OBJECTS , 1998, astro-ph/9806286.

[419]  K. Johnston A Prescription for Building the Milky Way's Halo from Disrupted Satellites , 1997, astro-ph/9710007.

[420]  M. Rauch The Lyman Alpha Forest in the Spectra of QSOs , 1998 .

[421]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[422]  M. Merrifield,et al.  The Shape of the Milky Way's Dark Halo , 1997, astro-ph/9907353.

[423]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[424]  P. Schneider,et al.  Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.

[425]  A. Réfrégier,et al.  Gravitational Lensing by Clusters of Galaxies , 1997 .

[426]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[427]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[428]  L. Hernquist,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995, astro-ph/9602060.

[429]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[430]  Semikoz,et al.  Kinetics of Bose condensation. , 1994, Physical review letters.

[431]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[432]  M. Machacek Growth of adiabatic perturbations in self-interacting dark matter , 1994 .

[433]  R. W. Nelson,et al.  The damping and excitation of galactic warps by dynamical friction , 1994, astro-ph/9408068.

[434]  B. Jain,et al.  Second-Order Power Spectrum and Nonlinear Evolution at High Redshift , 1993, astro-ph/9311070.

[435]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[436]  L. Lindblom On the symmetries of equilibrium stellar models , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[437]  L. Hall,et al.  Self-interacting dark matter , 1992 .

[438]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[439]  Richard B. Larson,et al.  Galaxy Formation and Evolution , 1992 .

[440]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[441]  S. Tremaine,et al.  Dark Matter in the Solar System , 1990 .

[442]  Konrad Kuijken,et al.  Kinematics, Chemistry, and Structure of the Galaxy , 1989 .

[443]  Neta A. Bahcall,et al.  Large-Scale Structure in the Universe Indicated by Galaxy Clusters , 1988 .

[444]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[445]  Spergel,et al.  Detecting cold dark-matter candidates. , 1986, Physical review. D, Particles and fields.

[446]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[447]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[448]  Goodman,et al.  Detectability of certain dark-matter candidates. , 1985, Physical review. D, Particles and fields.

[449]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[450]  Molitoris,et al.  Vlasov-Uehling-Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions. , 1985, Physical review. C, Nuclear physics.

[451]  S. Tremaine,et al.  Maximum mass of objects that constitute unseen disk material , 1985 .

[452]  M. Rees,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1985, Nature.

[453]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[454]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[455]  S. Gupta,et al.  Boltzmann equation for heavy ion collisions , 1984 .

[456]  J. Bahcall Self-consistent determinations of the total amount of matter near the sun. , 1984 .

[457]  J. R. Bond,et al.  The collisionless damping of density fluctuations in an expanding universe , 1983 .

[458]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[459]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[460]  P. Peebles Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations , 1982 .

[461]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[462]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[463]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[464]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[465]  J. R. Bond,et al.  Massive neutrinos and the large-scale structure of the Universe , 1980 .

[466]  J. W. Humberston Classical mechanics , 1980, Nature.

[467]  Sandra M. Faber,et al.  Masses and Mass-To-Light Ratios of Galaxies , 1979 .

[468]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[469]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[470]  M. Rees,et al.  A theory of galaxy formation and clustering. , 1975 .

[471]  P. Peebles,et al.  The size and mass of galaxies, and the mass of the universe , 1974 .

[472]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[473]  J. Einasto,et al.  Dynamic evidence on massive coronas of galaxies , 1974, Nature.

[474]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[475]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[476]  P. Peebles,et al.  A Numerical Study of the Stability of Flattened Galaxies: or, can Cold Galaxies Survive? , 1973 .

[477]  Y. Zel’dovich A Hypothesis, Unifying the Structure and the Entropy of the Universe , 1972 .

[478]  Emmy Noether,et al.  Invariant Variation Problems , 2005, physics/0503066.

[479]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[480]  E. Harrison,et al.  Fluctuations at the threshold of classical cosmology , 1970 .

[481]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[482]  D. Lynden-Bell Statistical Mechanics of Violent Relaxation in Stellar Systems , 1967 .

[483]  F. Kerr A Magellanic effect on the galaxy. , 1957 .

[484]  F. Zwicky,et al.  On the Formation of Clusters of Nebulae and the Cosmological Time Scale. , 1939, Proceedings of the National Academy of Sciences of the United States of America.

[485]  J. Oort The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems , 1932 .

[486]  E. Hubble,et al.  A general study of diffuse galactic nebulae. , 1922 .

[487]  J. C. Kapteyn First Attempt at a Theory of the Arrangement and Motion of the Sidereal System , 1922 .

[488]  J. Jeans On the theory of star-streaming and the structure of the universe , 1915 .