Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations.

The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm(-1) are discovered by means of UV resonance Raman spectroscopy with excitation wavelength lambda(exc)=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm(-1) in the UV Raman spectrum are assigned to combined C[Double Bond]C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for pipi interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF(3) substituents. This strong and even electron density distribution supports the hypothesis of pipi stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.

[1]  G. Scriba,et al.  Effect of kolanut on the pharmacokinetics of the antimalarial drug halofantrine , 2007, European Journal of Clinical Pharmacology.

[2]  Jon Baker,et al.  Direct Scaling of Primitive Valence Force Constants: An Alternative Approach to Scaled Quantum Mechanical Force Fields , 1998 .

[3]  J. Wiesner,et al.  Neue Antimalaria‐Wirkstoffe , 2003 .

[4]  M. Peterson,et al.  Quinoline Binding Site on Malaria Pigment Crystal: A Rational Pathway for Antimalaria Drug Design , 2002 .

[5]  Jürgen Popp,et al.  Morphology-sensitive Raman modes of the malaria pigment hemozoin. , 2009, The Analyst.

[6]  P. Minodier,et al.  Méfloquine versus halofantrine dans le traitement de l'accès simple à Plasmodium falciparum de l'enfant voyageur , 2005 .

[7]  D. Sullivan,et al.  On the molecular mechanism of chloroquine's antimalarial action. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[9]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[10]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[11]  J. Greve,et al.  Studying single living cells and chromosomes by confocal Raman microspectroscopy , 1990, Nature.

[12]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[13]  Jürgen Popp,et al.  In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations. , 2006, Biopolymers.

[14]  J. Garnier,et al.  [Mefloquine versus halofantrine in children suffering from acute uncomplicated falciparum malaria]. , 2005, Archives de pédiatrie.

[15]  S. Langhoff,et al.  The Calculation of Accurate Harmonic Frequencies of Large Molecules: The Polycyclic Aromatic Hydrocarbons, a Case Study , 1997 .

[16]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[17]  K. Kirk,et al.  Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum , 2000, Nature.

[18]  P. Roepe,et al.  Chloroquine resistance in the malarial parasite, Plasmodium falciparum , 2002, Medicinal research reviews.

[19]  B. Dietzek,et al.  Raman and CARS microspectroscopy of cells and tissues. , 2009, The Analyst.

[20]  Robert F. Hout,et al.  Molecular orbital studies of vibrational frequencies , 2009 .

[21]  M. P. Kaushik,et al.  Pharmacophore-based predictive model generation for potent antimalarials targeting haem detoxification pathway , 2007, Medicinal Chemistry Research.

[22]  R. Prankerd,et al.  Partitioning of halofantrine hydrochloride between water, micellar solutions, and soybean oil: Effects on its apparent ionization constant. , 2003, Journal of pharmaceutical sciences.

[23]  A. Becke Density-functional thermochemistry. II: The effect of the Perdew-Wang generalized-gradient correlation correction , 1992 .

[24]  M. Schmitt,et al.  Structural analysis of the anti-malaria active agent chloroquine under physiological conditions. , 2007, The journal of physical chemistry. B.

[25]  M. Schmitt,et al.  Raman spectroscopic investigation of the antimalarial agent mefloquine , 2007, Analytical and bioanalytical chemistry.

[26]  Mathew D. Halls,et al.  Comparison of the performance of local, gradient-corrected, and hybrid density functional models in predicting infrared intensities , 1998 .

[27]  Jürgen Popp,et al.  In situ localization and structural analysis of the malaria pigment hemozoin. , 2007, The journal of physical chemistry. B.

[28]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[29]  M. Foley,et al.  Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. , 1998, Pharmacology & therapeutics.

[30]  C. Kendall,et al.  Vibrational spectroscopy: a clinical tool for cancer diagnostics. , 2009, The Analyst.

[31]  N. Kishikawa,et al.  Determination of halofantrine and its main metabolite desbutylhalofantrine in rat plasma by high-performance liquid chromatography with on-line UV irradiation and peroxyoxalate chemiluminescence detection. , 2009, Biomedical chromotography.

[32]  B. Witkowski,et al.  Resistance to antimalarial compounds: methods and applications. , 2009, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[33]  Guntram Rauhut,et al.  Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields , 1995 .

[34]  Jürgen Popp,et al.  UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites. , 2007, Analytical chemistry.

[35]  S. Hoffman,et al.  Treatment of chloroquine-resistant Plasmodium vivax with chloroquine and primaquine or halofantrine. , 1995, The Journal of infectious diseases.

[36]  Peter W. Stephens,et al.  The structure of malaria pigment β-haematin , 2000, Nature.

[37]  Max Diem,et al.  Vibrational Spectroscopy for Medical Diagnosis , 2008 .

[38]  M. Andersson,et al.  New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-zeta basis set 6-311+G(d,p). , 2005, The journal of physical chemistry. A.

[39]  M. Schmitt,et al.  In vitro polarization‐resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine , 2004 .

[40]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[41]  T. Weinke,et al.  Halofantrin zur Behandlung der importierten Malaria bei nicht-immunen Reisenden , 2008 .

[42]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[43]  J. Lange,et al.  Antimalarial arylaminopropanols. , 1972, Journal of Medicinal Chemistry.

[44]  Derek A. Long,et al.  The Raman Effect , 2002 .

[45]  G. Scriba,et al.  Analysis of the antimalarial drug halofantrine and its major metabolite N-desbutylhalofantrine in human plasma by high performance liquid chromatography. , 2006, Journal of pharmaceutical and biomedical analysis.

[46]  T. Egan,et al.  The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. , 2008, Journal of inorganic biochemistry.

[47]  D. Goldberg,et al.  A Common Mechanism for Blockade of Heme Polymerization by Antimalarial Quinolines* , 1998, The Journal of Biological Chemistry.

[48]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[49]  M. Schmitt,et al.  Device for Raman difference spectroscopy. , 2007, Analytical chemistry.

[50]  Robert G. Ridley,et al.  Medical need, scientific opportunity and the drive for antimalarial drugs , 2002, Nature.

[51]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[52]  T. Wellems Plasmodium Chloroquine Resistance and the Search for a Replacement Antimalarial Drug , 2002, Science.

[53]  A. A. El-Azhary,et al.  Comparison between Optimized Geometries and Vibrational Frequencies Calculated by the DFT Methods , 1996 .

[54]  J. Popp,et al.  Relationship between molecular structure and Raman spectra of quinolines , 2009 .

[55]  M. Schmitt,et al.  Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy. , 2007, Analytical chemistry.

[56]  Jürgen Popp,et al.  Raman spectroscopy--a prospective tool in the life sciences. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[57]  Peter Lasch,et al.  Biomedical Vibrational Spectroscopy , 2008 .

[58]  T. Egan,et al.  Recent Advances in the Discovery of Haem-Targeting Drugs for Malaria and Schistosomiasis , 2009, Molecules.

[59]  S. Ward,et al.  A Requiem for Chloroquine , 2002, Science.

[60]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[61]  J. Popp,et al.  Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. , 2007, Lab on a chip.

[62]  W. Kiefer Raman Difference Spectroscopy with the Rotating Cell , 1973 .

[63]  M. Schmitt,et al.  In situ UV resonance Raman micro-spectroscopic localization of the antimalarial quinine in cinchona bark. , 2007, The journal of physical chemistry. B.