Non-Hermitian topological Anderson insulators

Non-Hermitian systems can exhibit exotic topological and localization properties. Here we elucidate the non-Hermitian effects on disordered topological systems using a nonreciprocal disordered Su-Schrieffer-Heeger model. We show that the non-Hermiticity can enhance the topological phase against disorders by increasing bulk gaps. Moreover, we uncover a topological phase which emerges under both moderate non-Hermiticity and disorders, and is characterized by localized insulating bulk states with a disorder-averaged winding number and zero-energy edge modes. Such topological phases induced by the combination of non-Hermiticity and disorders are dubbed non-Hermitian topological Anderson insulators . We reveal that the system has unique non-monotonous localization behavior and the topological transition is accompanied by an Anderson transition. These properties are general in other non-Hermitian models.

[1]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[2]  J. Dalibard,et al.  Topological bands for ultracold atoms. , 2018, Reviews of modern physics.

[3]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[4]  F. Song,et al.  Non-Hermitian Chern Bands. , 2018, Physical review letters.

[5]  Tanmoy Das,et al.  New topological invariants in non-Hermitian systems , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  R. Lu,et al.  PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials , 2014, 1405.5591.

[7]  M. Soljačić,et al.  Observation of bulk Fermi arc and polarization half charge from paired exceptional points , 2017, Science.

[8]  C. Beenakker,et al.  Theory of the topological anderson insulator. , 2009, Physical review letters.

[9]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[10]  Shu Chen,et al.  Majorana fermions in density-modulated p -wave superconducting wires , 2012, 1207.6192.

[11]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[12]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[13]  R. Barends,et al.  Observation of topological transitions in interacting quantum circuits , 2014, Nature.

[14]  S. Longhi,et al.  Topological Phase Transition in non-Hermitian Quasicrystals. , 2019, Physical review letters.

[15]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[16]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[17]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[18]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[19]  Hui Yan,et al.  Topological Maxwell Metal Bands in a Superconducting Qutrit. , 2017, Physical review letters.

[20]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[21]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[22]  M. Molina,et al.  Interplay of disorder and PT symmetry in one-dimensional optical lattices , 2015 .

[23]  Hui Yan,et al.  Experimental Measurement of the Quantum Metric Tensor and Related Topological Phase Transition with a Superconducting Qubit. , 2019, Physical review letters.

[24]  Yogesh N. Joglekar,et al.  Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms , 2016, Nature Communications.

[25]  S. Longhi,et al.  Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field , 2015, 1507.07651.

[26]  Raffaele Resta,et al.  Mapping topological order in coordinate space , 2011, 1111.5697.

[27]  Jiangbin Gong,et al.  Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems. , 2018, Physical review letters.

[28]  Y. Xiong Why does bulk boundary correspondence fail in some non-hermitian topological models , 2017, 1705.06039.

[29]  Kazuki Yamamoto,et al.  Theory of Non-Hermitian Fermionic Superfluidity with a Complex-Valued Interaction. , 2019, Physical review letters.

[30]  P. Zoller,et al.  Topological quantum matter with ultracold gases in optical lattices , 2016, Nature Physics.

[31]  G. Refael,et al.  Disorder-induced Floquet topological insulators. , 2014, Physical review letters.

[32]  Z. Wang,et al.  Simulation and Manipulation of Tunable Weyl-Semimetal Bands Using Superconducting Quantum Circuits. , 2019, Physical review letters.

[33]  P. Xue,et al.  Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks. , 2017, Physical review letters.

[34]  R. Moessner,et al.  Interplay between topology and disorder in a two-dimensional semi-Dirac material , 2017, 1709.00254.

[35]  T. Hughes,et al.  Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians , 2011, 1107.1064.

[36]  M. Heyl,et al.  Stretched exponential decay of Majorana edge modes in many-body localized Kitaev chains under dissipation , 2015, 1507.06117.

[37]  You Wang,et al.  Effects of non-Hermiticity on Su-Schrieffer-Heeger defect states , 2018, Physical Review B.

[38]  Stefan Nolte,et al.  Observation of a Topological Transition in the Bulk of a Non-Hermitian System. , 2015, Physical review letters.

[39]  A. Dauphin,et al.  Observation of the topological Anderson insulator in disordered atomic wires , 2018, Science.

[40]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[41]  Z. Song,et al.  Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry , 2018, Physical Review B.

[42]  Shun-Qing Shen,et al.  Topological Anderson insulator. , 2008, Physical review letters.

[43]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[44]  Han Zhao,et al.  Photonic zero mode in a non-Hermitian photonic lattice , 2018, Nature Communications.

[45]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[46]  Masahito Ueda,et al.  Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics , 2018, Nature Communications.

[47]  S. Sarma,et al.  Topological zero-energy modes in gapless commensurate Aubry-André-Harper models. , 2013, Physical review letters.

[48]  M. Rudner,et al.  Topological transition in a non-Hermitian quantum walk. , 2008, Physical review letters.

[49]  Jan Carl Budich,et al.  Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. , 2018, Physical review letters.

[50]  M. Ezawa Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization , 2019, Physical Review B.

[51]  Anatoli Polkovnikov,et al.  Measuring a topological transition in an artificial spin-1/2 system. , 2014, Physical review letters.

[52]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[53]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[54]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[55]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[56]  H. Zhai,et al.  Hall conductance of a non-Hermitian Chern insulator , 2018, Physical Review B.

[57]  Andrea Alù,et al.  Self-induced topological protection in nonlinear circuit arrays , 2018 .

[58]  Shu Chen,et al.  Anderson localization in the Non-Hermitian Aubry-André-Harper model with physical gain and loss , 2017, 1703.03580.

[59]  P. G. Harper,et al.  Single Band Motion of Conduction Electrons in a Uniform Magnetic Field , 1955 .

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[61]  Lei Wang,et al.  Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells , 2009, Physical Review B.

[62]  E. Prodan,et al.  Entanglement Spectrum of a Disordered Topological Chern Insulator , 2010 .

[63]  G. Refael,et al.  Topological Anderson insulator in three dimensions. , 2010, Physical review letters.

[64]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[65]  Stefano Longhi,et al.  Exceptional points and Bloch oscillations in non-Hermitian lattices with unidirectional hopping , 2014, 1404.3662.

[66]  Franco Nori,et al.  Second-Order Topological Phases in Non-Hermitian Systems. , 2018, Physical review letters.

[67]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[68]  M. Kohmoto,et al.  Edge states and topological phases in non-Hermitian systems , 2011, 1107.2079.

[69]  Topological Photonics , 2014, 1408.6730.

[70]  M. Bandres,et al.  Topological insulator laser: Theory , 2018, Science.

[71]  M. Segev,et al.  Probing topological invariants in the bulk of a non-Hermitian optical system , 2014, 1408.2191.

[72]  Y. Ashida,et al.  Parity-time-symmetric topological superconductor , 2018, Physical Review B.

[73]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[74]  L. Duan,et al.  Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. , 2016, Physical review letters.

[75]  Luis E. F. Foa Torres,et al.  Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points , 2017, 1711.05235.

[76]  Hui Jiang,et al.  Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices , 2019, Physical Review B.

[77]  Ching Hua Lee,et al.  Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial , 2018, Nature Communications.

[78]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[79]  M. Bandres,et al.  Topological insulator laser: Experiments , 2018, Science.

[80]  J. P. Garrahan,et al.  Robustness of Many-Body Localization in the Presence of Dissipation. , 2015, Physical review letters.

[81]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[82]  Victor V. Albert,et al.  Topological properties of linear circuit lattices. , 2014, Physical review letters.

[83]  Zohar Ringel,et al.  Topological States and adiabatic pumping in quasicrystals. , 2011, Physical review letters.

[84]  Ching Hua Lee,et al.  Topolectrical Circuits , 2017, Communications Physics.

[85]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[86]  M. Segev,et al.  Photonic topological Anderson insulators , 2018, Nature.

[87]  Masaya Notomi,et al.  Photonic Topological Insulating Phase Induced Solely by Gain and Loss. , 2017, Physical review letters.

[88]  Emil Prodan,et al.  Topological criticality in the chiral-symmetric AIII class at strong disorder. , 2013, Physical review letters.

[89]  Florian Bayer,et al.  Topolectrical-circuit realization of topological corner modes , 2017, Nature Physics.

[90]  Henning Schomerus,et al.  Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. , 2015, Physical review letters.

[91]  W. Yi,et al.  Non-Bloch topological invariants in a non-Hermitian domain wall system , 2019, Physical Review B.

[92]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[93]  Hui Yan,et al.  Topological quantum matter with cold atoms , 2018, Advances in Physics.

[94]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .