Direct piezoelectric properties of (100) and (111) BiFeO3 epitaxial thin films

The direct piezoelectric properties of BiFeO3 epitaxial thin films with different crystal orientation were investigated. Epitaxial films of (100) and (111) rhombohedral BiFeO3 fabricated using pulsed laser deposition showed rectangular hysteresis loops with remanent polarizations of 54 and 83 μC/cm2, respectively. Effective transverse piezoelectric coefficients (e31,f) of −3.5 and −1.3 C/m2 were obtained, for (100) and (111) films, respectively. Results suggest that the strong direct piezoelectric response of the (100) rhombohedral film results from the effects of the engineered-domain configuration.

[1]  T. Yoshimura,et al.  Local Piezoelectric and Conduction Properties of BiFeO3 Epitaxial Thin Films , 2010 .

[2]  S. Fusil,et al.  Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. , 2007, Physical review letters.

[3]  Wolfgang Kleemann,et al.  Large bulk polarization and regular domain structure in ceramic BiFeO3 , 2007 .

[4]  Takaaki Tsurumi,et al.  Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes , 2005 .

[5]  C. Ong,et al.  Dielectric dispersion of BiFeO3 thin film over a broad frequency range (100 Hz–10 GHz) , 2009 .

[6]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[7]  S. Fusil,et al.  Room-temperature coexistence of large electric polarization and magnetic order in Bi Fe O 3 single crystals , 2007, 0706.0404.

[8]  A. F. Devonshire CIX. Theory of barium titanate—Part II , 1951 .

[9]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[10]  K. Yao,et al.  Twinning rotation and ferroelectric behavior of epitaxial BiFeO3 (001) thin film , 2010 .

[11]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[12]  T. Kanashima,et al.  Enhancement of electrical properties in polycrystalline BiFeO3 thin films , 2006 .

[13]  Nicolas Ledermann,et al.  {1 0 0}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties , 2003 .

[14]  Paul Muralt,et al.  Measurement of the effective transverse piezoelectric coefficient e31,f of AlN and Pb(Zrx,Ti1−x)O3 thin films , 1999 .

[15]  Paul Muralt,et al.  Growth and properties of gradient free sol-gel lead zirconate titanate thin films , 2007 .

[16]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[17]  K. Saito,et al.  Structural Characterization of BiFeO3 Thin Films by Reciprocal Space Mapping , 2006 .

[18]  T. Yoshimura,et al.  Direct Piezoelectric Properties of Mn-Doped ZnO Epitaxial Films , 2010 .

[19]  Paul Muralt,et al.  Recent Progress in Materials Issues for Piezoelectric MEMS , 2008 .

[20]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[21]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[22]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[23]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[24]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[25]  Minoru Noda,et al.  Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film , 2004 .

[26]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .