A Shearlet Approach to Edge Analysis and Detection

It is well known that the wavelet transform provides a very effective framework for analysis of multiscale edges. In this paper, we propose a novel approach based on the shearlet transform: a multiscale directional transform with a greater ability to localize distributed discontinuities such as edges. Indeed, unlike traditional wavelets, shearlets are theoretically optimal in representing images with edges and, in particular, have the ability to fully capture directional and other geometrical features. Numerical examples demonstrate that the shearlet approach is highly effective at detecting both the location and orientation of edges, and outperforms methods based on wavelets as well as other standard methods. Furthermore, the shearlet approach is useful to design simple and effective algorithms for the detection of corners and junctions.

[1]  Rudolf Mester,et al.  Orientation estimation: Conventional techniques and a new non-differential approach , 2000, 2000 10th European Signal Processing Conference.

[2]  Lei Zhang,et al.  A wavelet-based edge detection method by scale multiplication , 2002, Object recognition supported by user interaction for service robots.

[3]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Syed Twareque Ali,et al.  Two-Dimensional Wavelets and their Relatives , 2004 .

[5]  Pietro Perona Steerable-scalable kernels for edge detection and junction analysis , 1992, Image Vis. Comput..

[6]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[7]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[8]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[9]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[10]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[11]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[12]  Djemel Ziou,et al.  Edge Detection Techniques-An Overview , 1998 .

[13]  Wang-Q Lim,et al.  Edge analysis and identification using the continuous shearlet transform , 2009 .

[14]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[19]  Pietro Perona,et al.  Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[21]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[24]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[25]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[27]  M. Do,et al.  Directional multiscale modeling of images using the contourlet transform , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[28]  Wen-Liang Hwang,et al.  Analysis of singularities from modulus maxima of complex wavelets , 2005, IEEE Trans. Inf. Theory.

[29]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[30]  Joost van de Weijer,et al.  Fast Anisotropic Gauss Filtering , 2002, ECCV.

[31]  J. Weickert Foundations and applications of nonlinear anisotropic diffusion filtering , 1996 .

[32]  Bülent Sankur,et al.  Multidirectional and multiscale edge detection via M-band wavelet transform , 1996, IEEE Trans. Image Process..

[33]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[34]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[35]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[36]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[37]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[38]  David G. Stork,et al.  Pattern Classification , 1973 .