A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Zhiqiang Cai,et al. First-Order System Least Squares for the Stress-Displacement Formulation: Linear Elasticity , 2003, SIAM J. Numer. Anal..
[3] R. Durán,et al. Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .
[4] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[5] Chunjae Park. A nonconforming linear divergence-free space over square meshes , 2011 .
[6] Ping Wang,et al. Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..
[7] Willy Dörfler,et al. Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow , 2005, Math. Comput..
[8] Dongho Kim,et al. A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems , 2008 .
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] I. Babuska,et al. The finite element method and its reliability , 2001 .
[11] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[12] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[13] Mark Ainsworth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..
[14] Zhiqiang Cai,et al. A Multigrid Method for the Pseudostress Formulation of Stokes Problems , 2007, SIAM J. Sci. Comput..
[15] Panayot S. Vassilevski,et al. Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .
[16] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[17] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[18] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[19] D. Arnold,et al. A new mixed formulation for elasticity , 1988 .
[20] D. Braess. Finite Elements: Finite Elements , 2007 .
[21] Marc I. Gerritsma,et al. Compatible Spectral Approximations for the Velocity-Pressure-Stress Formulation of the Stokes Problem , 1999, SIAM J. Sci. Comput..
[22] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[23] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[24] Dongho Kim,et al. A posteriori error estimator for expanded mixed hybrid methods , 2007 .
[25] G. Stoyan. Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .
[26] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .
[27] Maxim A. Olshanskii,et al. On the domain geometry dependence of the LBB condition , 2000 .
[28] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..