Eccentricity-dependent scaling of the limits for short-range apparent motion perception

The ability to report the direction of apparent motion when an array of random dots is displaced fails when the displacement exceeds a limiting value (dmax). We find that dmax increases rapidly with retinal eccentricity, in a manner different from spatial measures such as acuity which are believed to depend on the "magnification factor" of projection to area 17. The minimum displacement giving detectable motion (dmin) shows a shallower increase with eccentricity which is more compatible with the variation of cortical magnification. The dependence of apparent motion on the timing variables (exposure duration, inter-stimulus interval) changes negligibly with eccentricity. Consequently the dynamic range and the upper limit of detectable velocities increases greatly with eccentricity. The increase of dmax with eccentricity means that the perception of apparent motion will show an approximate invariance with display scale, even though dmax has a locally fixed value depending on receptive field structure.

[1]  M. P. Friedman,et al.  HANDBOOK OF PERCEPTION , 1977 .

[2]  H. Spekreijse,et al.  Electrophysiological Correlate of Binocular Depth Perception in Man , 1970, Nature.

[3]  D Finlay,et al.  Motion Perception in the Peripheral Visual Field , 1982, Perception.

[4]  B. Julesz,et al.  Displacement limits for spatial frequency filtered random-dot cinematograms in apparent motion , 1983, Vision Research.

[5]  Gerald Westheimer,et al.  Spatial phase sensitivity for sinusoidal grating targets , 1978, Vision Research.

[6]  C. Baker,et al.  The basis of area and dot number effects in random dot motion perception , 1982, Vision Research.

[7]  B. Julesz,et al.  Displacement limits, directional anisotropy and direction versus form discrimination in random-dot cinematograms , 1983, Vision Research.

[8]  S. Zeki Cells responding to changing image size and disparity in the cortex of the rhesus monkey , 1974, The Journal of physiology.

[9]  G. Westheimer The spatial grain of the perifoveal visual field , 1982, Vision Research.

[10]  M. J. Wright,et al.  Visual motion and cortical velocity , 1983, Nature.

[11]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[12]  M. Lichtenstein,et al.  Spatio-Temporal Factors in Cessation of Smooth Apparent Motion , 1963 .

[13]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[14]  Gerald Westheimer,et al.  Temporal order detection for foveal and peripheral visual stimuli , 1983, Vision Research.

[15]  S. Anstis,et al.  Phi movement as a subtraction process. , 1970, Vision research.

[16]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[17]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[18]  V. Ramachandran,et al.  Displacement thresholds for coherent apparent motion in random dot-patterns , 1983, Vision Research.

[19]  G. Legge,et al.  Displacement detection in human vision , 1981, Vision Research.

[20]  G. D. Lange,et al.  Apparent movement due to closely spaced sequentially flashed dots in the human peripheral field of vision. , 1971, Vision research.

[21]  J. Lappin,et al.  The detection of rotation in random-dot patterns , 1979 .

[22]  P. Burt,et al.  Time, distance, and feature trade-offs in visual apparent motion. , 1981 .

[23]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[24]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  R. Sekuler,et al.  Motion processing in peripheral vision: Reaction time and perceived velocity , 1982, Vision Research.

[26]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  G. Johansson Visual motion perception. , 1975, Scientific American.

[28]  Chris A. Johnson,et al.  Practice, refractive error, and feedback as factors influencing peripheral motion thresholds , 1974 .

[29]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[30]  O J Braddick,et al.  Temporal Properties of the Short-Range Process in Apparent Motion , 1985, Perception.

[31]  C. Tyler,et al.  Frequency response characteristics for sinusoidal movement in the fovea and periphery , 1972 .

[32]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[33]  O. Braddick The masking of apparent motion in random-dot patterns. , 1973, Vision research.

[34]  G. Stratton Studies from the psychological laboratory of the University of California. , 1902 .

[35]  Franklin H. McColgin,et al.  Movement Thresholds in Peripheral Vision , 1960 .

[36]  David H. Foster,et al.  The fine-grain movement illusion: A perceptual probe of neuronal connectivity in the human visual system , 1981, Vision Research.

[37]  A. Johnston,et al.  Spatiotemporal contrast sensitivity and visual field locus , 1983, Vision Research.

[38]  John Thorson,et al.  Objective Measure of the Dynamics of a Visual Movement Illusion , 1969, Science.

[39]  Moshe Gur,et al.  Hyperacuity in the detection of absolute and differential displacements of random dot patterns , 1980, Vision Research.

[40]  C. O. Roelofs,et al.  Some aspects of apparent motion , 1953 .

[41]  J. Rovamo,et al.  Temporal contrast sensitivity and cortical magnification , 1982, Vision Research.

[42]  J. Lappin,et al.  The detection of coherence in moving random-dot patterns , 1976, Vision Research.

[43]  K. Nakayama,et al.  Temporal and spatial characteristics of the upper displacement limit for motion in random dots , 1984, Vision Research.